Thermometry and up-conversion luminescence of Ln(3+)(Ln = Er, Ho, Tm)-doped double molybdate LiYbMo2O8

Yun, Xiangyan; Zhou, Jun; Zhu, Yaohui; Molokeev, Maxim S.; Jia, Yetong; et al. Journal Of Materials Science-materials In Electronics. DOI

The discovery of stable and highly sensitive up-conversion (UC) phosphors using the fluorescence intensity ratio (FIR) is a significant challenge in the field of optical temperature sensor. Er3+/Ho3+/Tm3+-doped LiYbMo2O8 UC phosphors with excellent luminescence properties were successfully synthesized through a high-temperature solid-state reaction, and the crystal structure and UC luminescence properties were discussed in detail. The UC process has been investigated by spectra pump power dependence and further explained via the energy level diagram. All emission processes about Er3+ ions and Ho3+ ions are two-photon processes and the blue emission process about Tm3+ ions is a combination of two-photon process and three-photon process. Thermal sensing performances depended on FIR technology were estimated and the sensitivities of LiYb1−xMo2O8:xLn3+ included absolute sensitivity (Sa) and relative sensitivity (Sr) can produce particular change rules with the temperature, which can serve as excellent candidates for applications in optical temperature sensing. With the increase of temperature, the maximum values of Sr of LiYb1−xMo2O8:xLn3+ are 1.16% K−1 (0.05Er3+), 0.25% K−1 (0.01Ho3+), and 0.51% K−1 (0.01Tm3+), respectively. In addition, the Sa value of LiYb0.95Mo2O8:0.05Er3+ phosphor will reach the maximum (1.08% K−1) at 475 K, while the maximum values of Sa of LiYb0.99Mo2O8:0.01Ho3+ and LiYb0.99Mo2O8:0.01Tm3+ are 0.16% K−1, 0.14% K−1.