Raman study of 3.65 angstrom-phase MgSi(OH)(6) under high pressure and the bands assignment

Borodina, Ulyana; Goryainov, Sergey; Oreshonkov, Aleksandr; с соавторами. HIGH PRESSURE RESEARCH . https://doi.org/10.1080/08957959.2020.1830078

3.65 Å-phase (or hydroxide-perovskite), MgSi(OH)6, is a representative of dense hydrous magnesium silicates (DHMS) with maximum water content (up to ∼35 wt.% H2O) and thus is of interest as one of the largest repositories of water among all the known hydrous phases. Sample of 3.65 Å-phase, grown in DIA-type multianvil apparatus, was studied by Raman spectroscopy under pressure up to ∼7 GPa with diamond anvil cell. Interpretation of the Raman spectrum was carried out using lattice-dynamical simulations within ab initio DFT method (CASTEP code). Additionally, OH-stretching bands are analyzed with two phenomenological models: empirical model by Novak and Libowitzky, using correlation between O–O distance and the wavenumber of the OH-stretching band, and theoretical model, using double Morse potentials of hydrogen bond O–H···O. Upon the pressure increase, octahedral and bending δ(ОН) vibrations exhibit linear positive pressure shift, whereas wavenumbers of the ОН-stretching modes show inverse