Гохфельд Денис Михайлович

gdm.jpg

Дата рождения: 13 июля 1977

Адрес: Институт физики им Л.В.Киренского, 660036, Россия

Телефон: 7 (3912) 494838

Факс: 7 (3912) 438923

E-mail: E-mail: gokhfeld@iph.krasn.ru

Образование:

  • 1994-2000 - Аэрокосмический факультет Сибирского Государственного Аэрокосмического Университета им. М.Ф. Решетнева, Красноярск.
  • 2004 - Кандидатская диссертация, Институт физики им. Л.В. Киренского СО РАН, Красноярск, "Физические процессы, формирующие вольт-амперные характеристики гетерогенных высокотемпературных сверхпроводников с непосредственной проводимостью межкристаллитных границ".
  • 2019 - Диссертация докт. физ.-мат. наук по физике конденсированного состояния (01.04.07) "Магнитный гистерезис и плотность критического тока неоднородных сверхпроводников в сильных магнитных полях", Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН

Профессиональный опыт:

  • 1996-2003 Исследование транспортных свойств поликристаллических ВТСП и композитов на их основе - инженер лаборатории сильных магнитных полей, Институт физики им. Л.В. Киренского
  • 2002-2003 Стажировка в группе профессора Р. Кюммеля, Institute for Theoretical Physics and Astrophysics of the Wuerzburg University, Wuerzburg, Germany
  • с 2004 Исследование магнитных и транспортных характеристик систем на основе ВТСП - научный сотрудник лаборатории сильных магнитных полей, Институт физики им. Л.В. Киренского

Научные интересы:

  • Высокотемпературная сверхпроводимость, транспортные и магнитные свойства гетерогенных сверхпроводников

Избранные публикации:

  1. Petrov M.I., Balaev D.A., Gohfeld D.M., Ospishchev S.V., Shaihutdinov K.A., Aleksandrov K.S. Applicability of the theory based on Andreev reflection to the description of experimental current-voltage characteristics of polycrystalline HTSC + normal metal composites // Physica C. - 1999. - V. 314. - P. 51-54.
  2. Shaihutdinov K.A., Balaev D.A., Gokhfeld D.M., Popkov S.I., Petrov M.I. Transport properties of HTSC-based composites: modeling the random networks of Josephson weak links with magneto-active barriers // J. Low Temp. Phys. - 2003. - V. 130. - № 3/4. - P. 347-381.
  3. Petrov M.I., Gokhfeld D.M., Balaev D.A., Shaihutdinov K.A., Kuemmel R. Andreev reflections and experimental current-voltage characteristics of break junctions of polycrystalline HTSC // Physica C. - 2004. - V. 408-410. - P. 620-622.
  4. Gokhfeld D.M., Balaev D.A., Popkov S.I., Shaykhutdinov K.A., Petrov M.I. Magnetization loop and critical current of porous Bi-based HTS // Physica C. – 2006. – V. 434. - № 2. – P. 135-137.
  5. Shaykhutdinov K.A., Balaev D.A., Gokhfeld D.M., Kuzmin Yu.I., Popkov S.I., Petrov M.I. Study of current–voltage characteristics of Bi-based high-temperature superconductors with fractal cluster structure // Physica C. – 2006. – V. 435. - № 1-2. – P. 19-22.
  6. Gokhfeld D.M. Description of hysteretic current–voltage characteristics of superconductor–normal metal–superconductor junctions // Supercond. Sci. Technol. – 2007. – V. 20. – P. 62 -66.
  7. Petrov M.I., Balaev D.A., Gokhfeld D.M. Andreev Reflection and Experimental Temperature Dependences of the Critical Current in Heterogeneous High-Temperature Superconductors (Polycrystals and Related Composites) // Phys. Solid State. - 2007. – Т. 49. – P. 619-626.
  8. Gokhfeld D.M. Computation of current–voltage characteristics of the SNS junctions // Physica C. – 2007. – V. 460-462. - № 2. – P. 807-808.
  9. Gokhfeld D.M., Balaev D.A., Shaykhutdinov K.A., Popkov S.I., Petrov M.I. Current - voltage characteristics of break junctions of high-Tc superconductors // Physica C. – 2007, cond-mat/0704.0694, 9 p., 2007.
  10. Gokhfeld D.M., Balaev D.A., Petrov M.I., Popkov S.I., Shaykhutdinov K.A., Val'kov V.V. Magnetization asymmetry of type-II superconductors in high magnetic fields // J. Appl. Phys. 2011, Vol. 109. – No. 3. – P. 033904 (6pp). https://doi.org/10.1063/1.3544038
  11. Gokhfeld D.M.  An extended critical state model: Asymmetric magnetization loops and field dependence of the critical current of superconductors // Phys. Solid State 2014, Vol. 56, P. 2380-2386. https://doi.org/10.1134/S1063783414120129
  12. Gokhfeld D.M., Balaev D.A., Yakimov I.S., Petrov M.I., Semenov S.V., Tuning the peak effect in the Y1−xNdxBa2Cu3O7−δ compound // Ceram. Int. – 2017. – Vol. 43. – No. 13. – P. 9985-9991. https://doi.org/10.1016/j.ceramint.2017.05.011
  13. Zeng XL, Karwoth T., Koblischka M.R., Hartmann U., Gokhfeld D.M., Chang C., Hauet T., Analysis of magnetization loops of electrospun nonwoven superconducting fabrics // Phys. Rev. Materials – 2017. – Vol. 1. – No. 4. – P. 044802 (8pp). https://doi.org/10.1103/ PhysRevMaterials.1.044802
  14. Gokhfeld D.M. Use of a sigmoid function to describe second peak in magnetization loops // J. Supercond. Novel Magn. – 2018. – Vol. 31. – No. 6. – P. 1785–1789. https://doi.org/10.1007/s10948-017-4400-2
  15. Gokhfeld D.M. The circulation radius and critical current density in type-II superconductors // Tech. Phys. Lett. 2019, Vol. 45, P. 1–3. https://doi.org/10.1134/S1063785019010243
  16. Koblischka M.R., Kumar Naik S.P., Koblischka-Veneva A., Murakami M, Gokhfeld D.M., Reddy E.S., Schmitz G.J. Superconducting YBCO Foams as Trapped Field Magnets // Materials. https://doi.org/10.3390/ma12060853
  17. Bykov A.A., Gokhfeld D.M., Savitskaya N.E., Terentjev K. Yu., Popkov S.I., Mistonov A.A., Grigoryeva N.A., Zakhidov A., Grigoriev S.V. Flux pinning mechanisms and a vortex phase diagram of tin-based inverse opals // Supercond. Sci. Technol. – 2019. – Vol. 32. – No. 11. – P. 115004 (9pp). https://doi.org/10.1088/1361-6668/ab3db7
  18. Bykov A.A., Gokhfeld D.M., Altynbaev E.V., Terent'ev K.Yu., Martin N., Semenov S.V., Grigoriev S.V. Effect of trapped magnetic flux on neutron scattering in La1.85Sr0.15CuO4 superconductor // J. Supercond. Novel Magn. – 2019. – Vol. 32. – No. 12. – P. 3797–3802.  https://doi.org/10.1007/s10948-019-05195-5
  19. Valsecchi J., White J.S., Bartkowiak M., Treimer W., Kim Y., Lee S.W., Gokhfeld D.M., Harti R.P., Morgano M., Strobl M., Grünzweig C. Visualization of compensating currents in type-II/1 superconductor via high field cooling // Appl. Phys. Lett. 2020, Vol. 116, P. 192602 (5 pp.). https://doi.org/10.1063/5.0004438