Effect of the spin crossover of local copper-oxygen states on the electronic structure of HTSC cuprates

Makarov, I. A.; Ovchinnikov, S. G.// arXiv.org, e-Print Archive, Condensed Matter//


In this work, the effect of uniaxial pressure along the c axis on the electronic structure of the HTSC cuprate La2-xSrxCuO4 is investigated at the doping levels x = 0.1, 0.15, 0.25. The GTB method within the five-band p-d model framework is used to describe the electron system. The uniaxial compression leads to a significant reconstruction of the electronic structure and a change in the character of low-energy quasiparticle excitations: a large contribution of a1g symmetry orbitals appears at the top of the valence band. The crossover between the local Zhang-Rice singlet and the Emery-Reiter triplet was found at the pressure Pc = 15.1 GPa. The characteristic changes in the electronic structure under pressure occur abruptly as a result of the crossover. In particular, the top of the valence band displaces to the region around the k-point (pi,0), the Fermi contour transforms to the four pockets around (0,0),(2pi,0),(0,2pi),(2pi,2pi) and the one contour around (pi,pi).