Electrical resistivity and the Hall effect in the doped Mott-Hubbard material with strong spin-charge coupling

Maxim M Korovushkin// Physica Scripta//

DOI 10.1088/1402-4896/ad05ed

The kinetic characteristics of the doped Mott-Hubbard material are considered within the realistic spin-fermion model which takes into account the strong spin-charge coupling. The kinetic equation constructed on the basis of the mechanism of carrier scattering on the spin fluctuations is solved using the multi-moment method, which allows one to analyze the temperature behavior of nonequilibrium distribution function in the problems of electrical resistivity ρ and the Hall coefficient RH. The calculated dependences ρ(T) and RH(T) for the underdoped and optimally doped regimes demonstrate good qualitative agreement with the experimental data. In particular, the Hall coefficient calculated for the underdoped regime reproduces the experimentally observed sharp drop and even a change in sign at low temperatures.