Correlation Between Magnetic and Electric Properties in the Series of CoxZnl1 – xFe2O4 Nanoparticles
https://doi.org/10.1134/S0021364023600969
Magnetization dependences of CoxZnl1 – xFe2O4 nanoparticles (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) synthesized with the citrate precursor technique on an external magnetic field and temperature are presented. Ferrimagnetic order in nanoparticles with x ≥ 0.2 appeared at temperatures, T, exceeding room temperature, and in nanoparticles with x = 0 and 0.1 at T near 100 K. The saturation magnetization, Ms, remnant magnetization, Mr, and the coercive force, Hc, increase with x increase and the temperature decrease. Ms reached very high value: Ms of NPs with x = 0.5 equals to 106.6 emu/g at 100 K while, according to the literature data, Ms of stoichiometric bulk Co ferrite equals to 90 emu/g at 4.2 K. Correlations between concentration dependences of magnetic and electric properties has been revealed and explained qualitatively.