Temperature- and Field-Induced Transformation of the Magnetic State in Co2.5Ge0.5BO5

Kazak, N., Arauzo, A., Bartolomé, J., (...), Patrin, G., Ovchinnikov, S.// Inorganic Chemistry//


A tetravalent-substituted cobalt ludwigite Co2.5Ge0.5BO5 has been synthesized using the flux method. The compound undergoes two magnetic transitions: a long-range antiferromagnetic transition at TN1 = 84 K and a metamagnetic one at TN2 = 36 K. The sample-oriented magnetization measurements revealed a fully compensated magnetic moment along the a- and c-axes and an uncompensated one along the b-axis leading to high uniaxial anisotropy. A field-induced enhancement of the ferromagnetic correlations at TN2 is observed in specific heat measurements. The DFT+GGA calculation predicts the spin configuration of (↑↓↓↑) as a ground state with a magnetic moment of 1.37 μB/f.u. The strong hybridization of Ge(4s, 4p) with O (2p) orbitals resulting from the high electronegativity of Ge4+ is assumed to cause an increase in the interlayer interaction, contributing to the long-range magnetic order. The effect of two super–superexchange pathways Co2+-O-B-O-Co2+ and Co2+-O-M4-O-Co2+ on the magnetic state is discussed.