Double-Resolved Beam Steering by Metagrating-Based Tamm Plasmon Polariton
https://doi.org/10.3390/ma15176014
We consider Tamm plasmon polariton in a subwavelength grating patterned on top of a Bragg reflector. We demonstrate dynamic control of the phase and amplitude of a plane wave reflected from such metagrating due to resonant coupling with the Tamm plasmon polariton. The tunability of the phase and amplitude of the reflected wave arises from modulation of the refractive index of a transparent conductive oxide layer by applying the bias voltage. The electrical switching of diffracted beams of the ±1st order is shown. The possibility of doubling the angular resolution of beam steering by using asymmetric reflected phase distribution with integer and half-integer periods of the metagrating is demonstrated.