Trimetallic magnetite-Ti-Au nanoparticle formation: A theoretical approach

Fedorov, A. S.; Kovaleva, E. A.; Sokolov, A. E.; Visotin, M. A.; Lin, C. R.; et al./ Materials Chemistry And Physics/

Geometric, electronic and magnetic structure of planar slabs consisting of magnetite Fe3O4, titanium and gold layers are investigated by DFT-GGA calculations. It is assumed that these slabs can be used to simulate the upper layers of magnetite nanoparticles covered with an intermediate layer of titanium and a gold layer on the surface. Specific energies and spreading parameters (wettability) of the magnetite-gold, magnetite-titanium and titanium-gold interfaces are calculated. The specific energy and spreading parameter of the magnetite-gold interface is found to be negative, while these values of the magnetite-titanium (for thin Ti layer) and magnetite-titan-gold interfaces are significantly positive. This allows us to hope that the intermediate thin layer of titanium at the boundary between the surface of the magnetite nanoparticle and the gold layer stabilizes this three-layer structure and allows obtaining magnetite nanoparticles covered with continuous gold coating.