Дилатометр измерит деформации космических материалов в вакууме

12.04.2018

12042018_nsc.jpg

Ученые из Института физики им. Л.В. Киренского Федерального исследовательского центра Красноярский научный центр СО РАН (ФИЦ КНЦ СО РАН) разработали измерительную ячейку для исследования свойств материалов при температурах близких к абсолютному нулю. С помощью нового метода ученые исследуют углепластики, клеящие материалы и металлические изделия, которые используются для создания внеземных аппаратов, в частности космической обсерватории Миллиметрон.

 При любом изменении условий окружающей среды вещество деформируется. Всем известно, что металлы при нагревании расширяются. Однако не только температура влияет на линейные размеры материалов. Менее известное явление магнитострикции связано с тем, что вещества, обладающие магнитными свойствами, меняют размер при преобразовании состояния намагниченности. В случае пьезоэлектрического эффекта, механические деформации возникают под действием электрического поля. Особо высокие требования к устойчивости материалов предъявляют при проектировании космических аппаратов. Разработчики должны точно знать, как поведет себя изделие при разных внешних условиях.

Красноярские физики разработали и запатентовали уникальную измерительную ячейку – дилатометр, которая позволяет проводить высокоточные измерения сверхмалых деформаций твердых образцов в диапазоне температур от -270 до 80 градусов Цельсия. Кроме воздействия температуры на линейный размер изделия, ячейка позволяет прикладывать магнитное и электрическое поля. Возможна и обратная задача – анализ того, как механические напряжения влияют на магнитные свойства материала. Это первый в России подобный дилатометр.

«Главным преимуществом разработанной ячейки является возможность проводить исследования деформации образца, вызванной магнитострикцией и пьезоэффектом, одновременно прикладывая магнитное и электрическое поля. Кроме этого, существует возможность проводить измерения в условиях вакуума при гелиевых (сверхнизких) температурах, что приближенно к космическим условиям», — пояснил кандидат физико-математических наук, научный сотрудник Института физики им. Л.В. Киренского ФИЦ КНЦ СО РАН Александр Фрейдман.

Измерения выполняются с использованием емкостного конденсатора, который имеет две плоские обкладки. Одна из обкладок – неподвижная, а другая подвешена на специальной мембране и может смещаться. Исследуемый материал помещается в ячейку, где подвижная обкладка емкостного датчика соприкасается с образцом. Подвергаясь внешнему воздействию, образец изменяет свои размеры, это приводит к смещению подвижной обкладки конденсатора. Емкость конденсатора зависит от расстояния между обкладками, его электрическая емкость изменяется. Полученный сигнал пересчитывается в коэффициент линейного расширения необходимый для построения различных математических моделей с использованием экспериментальных данных.

Как пояснил кандидат физико-математических наук, старший научный сотрудник Института физики им. Л.В. Киренского ФИЦ КНЦ СО РАН Сергей Попков подобные измерительные ячейки не производят массово. Обычно их создают под конкретную установку. Работа красноярских ученых была связана с разработкой оборудования для измерения температурных и оптических характеристик материалов, которые используются при создании российской космической обсерватории Миллиметрон. В результате была создана уникальная ячейка, на изобретение был получен патент РФ.

Ученые планируют усовершенствовать дилатометр. «Сейчас ячейка показывает только продольные изменения размера, то есть внешнее поле можно приложить только в одном направлении. Стоит задача доработать ячейку так, чтобы появилась возможность прикладывать поле вдоль другой оси, чтобы увидеть полную картину происходящего с образцом. В результате мы перейдем от плоского к объемному представлению о поведении изделия», — заключил Александр Фрейдман.

Созданный в рамках космического проекта прибор может найти применение и в наземных исследованиях. С его помощью можно изучать мультиферроики – материалы, которые изменяют свои свойства под действие магнитного и электрического полей. Взаимодействие между магнитной подсистемой и электрическими свойствами открывает широкие возможности для применения мультиферроиков, как функционального материала, например, для высочувствительных датчиков переменного магнитного поля и СВЧ-устройств, таких как фильтров и генераторов.

Автор публикации Екатерина Бурчевская


Поделиться: