Si/Fe flux ratio influence on growth and physical properties of polycrystalline beta-FeSi2 thin films on Si(100) surface

Tarasov, I. A.; Visotin, M. A.; Aleksandrovsky, A. S.; Kosyrev, N. N.; Yakovlev, I. A.; Molokeev, M. S.; Lukyanenko, A. V.; Krylov, A. S.; Fedorov, A. S.; Varnakov, S. N.; Ovchinnikov, S. G. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 440 144-152; Doi: 10.1016/j.jmmm.2016.12.084 OCT 15 2017

This work investigates the Si/Fe flux ratio (2 and 0.34) influence on the growth of β-FeSi2 polycrystalline thin films on Si(100) substrate at 630 °C. Lattice deformations for the films obtained are confirmed by X-ray diffraction analysis (XRD). The volume unit cell deviation from that of β-FeSi2 single crystal are 1.99% and 1.1% for Si/Fe =2 and Si/Fe =0.34, respectively. Absorption measurements show that the indirect transition (~ 0.704 eV) of the Si/Fe =0.34 sample changes to the direct transition with a bandgap value of ~0.816 eV for the sample prepared at Si/Fe =2. The absorption spectrum of the Si/Fe =0.34 sample exhibits an additional peak located below the bandgap energy value with the absorption maximum of ~0.36 eV. Surface magneto-optic Kerr effect (SMOKE) measurements detect the ferromagnetic behavior of the β-FeSi2 polycrystalline films grown at Si/Fe =0.34 at T=10 K, but no ferromagnetism was observed in the samples grown at Si/Fe =2. Theoretical calculations refute that the cell deformation can cause the emergence of magnetization and argue that the origin of the ferromagnetism, as well as the lower absorption peak, is β-FeSi2 stoichiometry deviations. Raman spectroscopy measurements evidence that the film obtained at Si/Fe flux ratio equal to 0.34 has the better crystallinity than the Si/Fe =2 sample.


Поделиться: