Фазовые переходы в смешанных кристаллах Rb_xK_{1-x} LiSO₄

© С.В. Мельникова, М.В. Горев, В.А. Гранкина

Институт физики им. Л.В.Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

(Поступила в Редакцию 16 января 1998 г.)

Исследованы структурные фазовые переходы в смешанных кристаллах $Rb_xK_{1-x}LiSO_4$ (*x* изменяется от нуля до единицы) в температурном интервале от точки плавления до температуры жидкого азота. На основе калориметрических (ДТА и ДСК) данных, результатов измерений двупреломления и поляризационнооптических наблюдений построена полная фазовая (T-x)-диаграмма. Установлено, что кристаллы вырастают в большинстве составов ($x \le 0.95$) в гексагонально-тригональной структуре KLiSO₄. Замена K на более крупный Rb приводит к значительному увеличению области существования фазы P31c и вытеснению высокотемпературной гексагональной фазы.

Тридимитоподобные кристаллы ALiSO₄ (A = Cs, Rb, K, NH₄) имеют структуру каркасного типа, построенную из чередующихся тетраэдров LiO₄ и SO₄, объединенных вершинами в шестичленные кольца, в середине которых находится катион А. При больших ионных радиусах этого катиона может иметь место искажение гексагональной симметрии колец, как в случае Cs или Rb. Все названные представители семейства имеют существенно различающиеся последовательности фазовых переходов (ФП) в процессе понижения температуры. Различие в симметрии фаз связано с разными вариантами упорядочения тетраэдрических групп в них. В KLiSO₄ (KLS) и RbLiSO₄ (RLS) имеют место более сложные последовательности изменения симметрии при ФП по сравнению, например, с CsLiSO₄, где имеется только один ФП.

Хотя свойства большинства названных соединений хорошо изучены, ответа на вопрос о том, почему именно в RbLiSO₄ и KLiSO₄ сколь велико разнообразие фаз и ФП (по сравнению с CsLiSO₄ и NH₄LiSO₄), пока еще нет. Немало информации для решения этой задачи дают систематические исследования твердых растворов перечисленных веществ.

В смешанных кристаллах с большими катионами $Rb_xCs_{1-x}LiSO_4$ [1,2] даже малые добавки Rb и Cs в чистые вещества RLS и KLS резко понижают температуры переходов в моноклинную фазу $P112_1/n$, и затем она исчезает. В средней части фазовой диаграммы становится стабильной фаза $P2_1/c11$ с исчезающе малым моноклинным искажением элементарной ячейки, которая в чистом RLS имеет узкий интервал существования (475–458K). Похожий вид имеет фазовая диаграмма $Rb_x(NH_4)_{1-x}LiSO_4$ [3]. Но наиболее интересны, на наш взгляд, исследования твердых растворов RbLiSO₄ и KLiSO₄ — кристаллов, имеющих наиболее сложные последовательности смены фаз.

В первом из них наблюдаются следующие фазы: $1 - Pmcn, c = c_0$ выше 477 К; в узком температурном интервале 477–475 К найдена последовательность фаз несоразмерная–соразмерная сегнетоэлектрическая; между 475 и 458 К — моноклинная сегнетоэластическая фаза $3 - P2_1/c11, c = 2c_0$; в области 458–439 К фаза $4 - P11n, c = 5c_0$; при более низких температурах имеет место сегнетоэластическая фаза 5 — $P112_1/n$, $c = c_0$ [4].

В КLS найден иной порядок смены фаз при понижении температуры: $I^* - P6_3mmc$ или $P6_3mc$ выше 941 К, 2^* — ромбическая $Pc2_1n$, $Pbn2_1$ или Pmcn(941–708 К); $3^* - P6_3$ (708–242 \uparrow, \downarrow 201 К), $4^* - P31c$ (242 \uparrow, \downarrow 201–178 К), $5^* - Cc$ или $Cmc2_1$ ниже 178 К. Несмотря на активную работу с этим веществом, до сих пор остается много вопросов, связанных с симметрией фаз, их количеством и даже температурами ФП. Основные причины этих трудностей — сложное двойникование во всех фазах и сосуществование разных структур в некоторых температурных областях [5,6].

В настоящей работе представлены результаты исследований твердых растворов $Rb_xK_{1-x}LiSO_4$. Исследована фазовая (T - x)-диаграмма этого вещества методом поляризационно-оптических наблюдений пластинок разных ориентаций с использованием данных измерений двупреломления и тепловых аномалий.

1. Эксперимент

Монокристаллы для исследований получены медленным испарением соответствующих смесей водных растворов KLS и RLS при $T \approx 300$ К. Выращенные монокристаллы имели форму шестигранных таблеток для $x \leq 0.3$, шестигранных призм для x > 0.8 и игл для средних значений x. Образцы проходили обязательную проверку на количественный состав методами рентгенфлуоресцентного и атомно-адсорбционного анализа. Как правило, соотношение Rb:К в кристаллах отличалось от заложенного в растворе. Наиболее крупные и качественные кристаллы получены в составах с малым x. Образцы для оптических исследований под микроскопом вырезались перпендикулярно и параллельно грани роста.

Область перехода гексагональная-тригональная фаза изучалась с помощью измерений двупреломления методом компенсатора Берека с точностью $\cong 10^{-5}$ в пластинках, параллельных грани роста. Этот метод использовался нами из-за возможности работать на мелких образцах, в которых выбирались монодоменные области.

Рис. 1. Фазовая диаграмма твердых растворов $Rb_x K_{1-x} LiSO_4$. Треугольниками обозначены результаты работы [11].

Наличие тепловых аномалий определялось на дифференциальном сканирующем микрокалориметре ДСМ-2М в области 150–750 К при скоростях изменения температуры 8 К/min, а также с помощью дифференциального термического анализа (ДТА) до точки плавления и выше.

На рис. 1 представлена полученная нами фазовая диаграмма твердых растворов $Rb_xK_{1-x}LiSO_4$. Из наблюдений под микроскопом в поляризованном свете следует, что при комнатной температуре в твердом растворе реализуется оптически одноосная симметрия вплоть до величин *x* ≈ 0.95. При нагревании она изменяется на ромбическую 2* с характерными 120° двойниками и прямыми погасаниями. Температура этого ФП снижается от \cong 700 до \cong 400 K с увеличением *х*. Этот ФП носит черты реконструктивного со взрывоподобным растрескиванием образца и затягиванием его температуры. В ДСМ-измерениях этот факт отражается в наличии одного, двух и даже трех пиков теплопоглощения (кривая 2 на рис. 2). На рис. 1 эта область сосуществования двух фаз ограничена пунктирной линией снизу и имеет наибольшую ширину у составов с x = 0.3 - 0.8.

В зависимости от величины изменения энтальпии (ΔH) и энтропии (ΔS) составы можно разделить на две части: соединения с малым (x = 0-0.5) и боль-

Рис. 2. Тепловые аномалии в кристаллах с различным содержанием Rb. x = 0.12 (1), 0.40 (2), 0.95 (3), 0.92 (4) и 0.90 (5).

шим содержанием Rb (x = 0.9-1) (см. таблицу). В первом случае обнаружены одна или несколько аномалий, соответствующих ярко выраженному фазовому переходу первого рода между фазами 2^* и 3^* . Изменение энтальпии составляет 5200–6800 J/mol и хорошо согласуется с данными, полученными в работах [7,8] для чистого KLS. Изменение энтропии, определяемое как $\Delta S = \Delta H/T$, в зависимости от *x* имеет величину в пределах 8.7–9.7 J/mol·K, близкую к значению $R \ln 3 = 9.13$ J/mol·K.

Параметры фазовых переходов, определенные из ДСМ-исследований

x	<i>Т</i> , К	ΔH , J/mol	ΔS , J/mol · K
0.00	709	6193	8.73
0.014	703	6794	9.66
0.02	699	6088	8.78
0.043	697	6398	9.16
0.22	663; 635	6343	9.76
0.40	622; 595	5236	8.80
0.75	433-530	3400	6.75
0.90	457;418;385;356	2000	4.6
0.92	453; 425; 380	1440	3.21
0.95	458; 428	1600	3.5

Рис. 3. Температурная зависимость угла поворота оптической индикатрисы в моноклинной $P112_1/n$ фазе Rb_xK_{1-x}LiSO₄. x = 1.0 (1), 0.99 (2), 0.95 ($\Delta T_1 = 2$ K, $\Delta T_2 = \infty$) (3), 0.90 ($\Delta T_1 = 16$ K, $\Delta T_2 = 20$ K) (4).

Во втором случае фиксируется несколько аномалий, связанных с различными фазовыми переходами. Аномалии довольно близки по температуре и размазаны, так что разделить их все невозможно. Оценка ΔH и ΔS дает для $\Phi \Pi$ *1–3*: $\Delta H_{1-3} = 1000-1300$ J/mol, $\Delta S_{1-3} \cong 3-3.5$ J/mol·K. Изменение энтальпии и энтропии в результате переходов 3–4–5 составляет 400–600 J/mol и 1–1.6 J/mol·K соответственно.

В соединении с x = 0.75 суммарные изменения энтальпии и энтропии в результате нескольких ФП из ромбической фазы в тригональную составляют $\Delta H = 3400$ J/mol, $\Delta S = 6.75$ J/mol · K.

Малые добавки К и Rb в чистые вещества RLS и KLS резко понижают температуры переходов в сегнетоэластические фазы 5 $(P112_1/n)$ (RLS) и 5* $(Cmc2_1)$ (KLS) таким образом, что при $x \leq 0.95$ и ≥ 0.20 эти фазы уже отсутствуют в твердом растворе. На рис. З показано температурное поведение угла поворота оптической индикатрисы вокруг [001] в фазе 5 в разных составах относительно погасания в ромбической *Ртсп.* Зависимость $\varphi(T)$ во всех соединениях одинакова. Добавка К в RbLiSO₄ не влияет на характер ФП, а только смещает его температуру. Интересным в этом рисунке является то, что для некоторых составов угол *ф* может существовать в узкой температурной области, ограниченной снизу оптически одноосной фазой. Так, при x = 0.90 в процессе нагрева моноклинная фаза 5 существует в температурном интервале 407-423 К, а при охлаждении — 416–388 К. Кристалл с x = 0.95 вырастает одновременно в моноклинной фазе 5 (погасающие части) и оптически одноосной (непогасающие, темные области). В процессе нагрева при $T_0 = 323 \, {\rm K}$ такой образец начинает погасать полностью под углом $\varphi(T)$, а выше $T_1 = 410 \,\mathrm{K} \, \varphi = 0$. При охлаждении фазового перехода T_2 не обнаружено. Вплоть до температуры жидкого азота образец остается моноклинным. Но со временем (несколько часов при комнатной температуре) в кристалле вновь формируется оптически одноосная фаза, и описанный выше процесс можно повторить.

Граница между двумя оптически одноосными фазами Р63 и Р31с исследовалась с помощью измерений температурных зависимостей двупреломления. Результаты представлены на рис. 4. Интересующий нас переход имеет характерный температурный гистерезис $\Delta n(T)$ шириной \approx 50 K [9]. Добавка Rb в KLS сдвигает этот ФП вверх и стабилизирует тригональную симметрию при комнатной температуре. С увеличением х постепенно уменьшается величина скачка двупреломления δn и величины температурного гистерезиса ΔT . При x = 0.00, 0.043, 0.014 эти величины таковы: $\delta n = 3 \cdot 10^{-3}, \Delta T \approx 45 \,\mathrm{K},$ а при x = 0.57, 0.74 $\delta n = 2 \cdot 10^{-3}, \ \Delta T pprox 20 \, {
m K}$ с резким скачком двупреломления. Нужно отметить большую растянутость гистерезисной кривой в составах с x = 0.22, 0.10. Возможно, это объясняется сосуществованием фаз, характерным для KLS [1,2], или сильной зависимостью температуры перехода от x (рис. 1).

Рис. 4. Зависимость двупреломления от температуры вблизи перехода гексагональная–тригональная фаза $Rb_xK_{1-x}LiSO_4$. x = 0.014 (1), 0.043 (2), 0.1 (3), 0.22 (4), 0.30 (5), 0.50 (6), 0.57 (7) и 0.74 (8).

2. Обсуждение результатов

В настоящей работе мы исследовали фазовую (T - x)-диаграмму твердых растворов $Rb_xK_{1-x}LiSO_4$ от температуры жидкого азота до плавления вещества. Проведенные исследования позволили установить существующие в нем границы фаз (рис. 1).

Добавки ионов Rb в KLS повышают температуру самого верхнего структурного ФП из гексагональной фазы 1^* в ромбическую 2^* и постепенно приближают к температуре плавления таким образом, что при x > 0.5две аномалии ДТА, сопровождающие эти два процесса, уже не разделяются. При этом мы не нашли границы, которая бы разделяла области существования фаз 1(RLS) и 2^* (KLS). По этой причине предполагаем, что симметрия фазы 2^* KLS та же, что и в случае фазы 1RLS, — *Pmcn*. Кроме того, из полученных данных можно полагать, что в RbLiSO₄ нет высокотемпературной гексагональной фазы.

С увеличением содержания Rb в твердом растворе температура реконструктивного перехода 2^*-3^* понижается, а температура перехода 3^*-4^* повышается так, что в большинстве составов при комнатной температуре имеет место тригональная симметрия. Таким образом, в полученных веществах наиболее устойчивой оказалась гексагонально-тригональная структура.

Двупреломление кристалла KLS очень широко исследовалось разными авторами [9–11] и др. Нужно отметить, что все они использовали для измерений наиболее чувствительные относительные методы, например компенсатор Сенармона. Использованный нами компенсатор Берека позволяет измерять абсолютную величину двупреломления. Оказалось, что и в KLS, и в твердых растворах при комнатной температуре величина $\Delta n \approx 4 \cdot 10^{-4}$ ($\lambda = 630$ nm) невелика и при охлаждении уменьшается до нуля вблизи 270 К. При дальнейшем понижении температуры двупреломление становится отрицательным. Как можно заметить из рис. 4, действительная температурная зависимость двупреломления в KLS выглядит несколько иначе, чем мы привыкли [9–11].

Исследованные нами вещества имеют так называемую "точку оптической изотропии" на шкале температур, которая зависит как от величины x, так и от длины волны света, так как вещества обладают большой дисперсией двупреломления. В пределах длин волн от красной до зеленой оно изменяется на $\delta n \approx 1 \cdot 10^{-3}$. Этот факт привлекает внимание возможностью практического использования исследованных здесь веществ в качестве материалов для узкополосных оптических фильтров, но мероэдрическое двойникование является непреодолимым препятствием для осуществления такого проекта.

Исследования твердых растворов $Rb_xK_{1-x}LiSO_4$ с x = 0.10, 0.15, 0.20, 0.50 при температурах ниже комнатной были начаты в [11]. Авторы этой работы показали, что кристалл KLS с добавкой Rb испытывает те же ФП, что и чистый. Введение Rb сдвигает тригональногексагональный переход к высоким температурам, а ФП в сегнетоэластическую фазу — к низким. В общих чертах наши результаты сходятся с [11]. Однако, как видно из рис. 1, фазовые границы на наших диаграммах существенно не совпадают с данными [11]. Мы наблюдали более сильное влияние замещения на температуры переходов. Возможные причины кроются в разных условиях измерения двупреломления. В наших измерениях образец находился в свободном состоянии, а в [11] под одноосным сжатием в 50 bar. Согласно [10], под таким воздействием наблюдается смещение температуры сегнетоэластического ФП вверх на 7 К. Схожий эффект имеет место и при гидростатическом воздействии [12].

Однако такое объяснение не подходит для $\Phi\Pi$ между одноосными фазами. Согласно [12], этот $\Phi\Pi$ также смещается вверх при сжатии. Во избежание ошибок в определении *x*, считая, что состав может отличаться в разных пирамидах роста, мы проводили атомно-адсорбционный анализ прошедших исследования образцов.

Таким образом, из полученных данных следует, что гексагонально-тригональная структура KLiSO₄ является более устойчивой по сравнению с RbLiSO₄ и потому занимает почти всю площадь фазовой диаграммы (рис. 1). Частичная замена К на больший катион Rb способствует "разрыхлению" структуры и стабилизации симметрии P31c с большим объемом элементарной ячейки [5,6].

Работа выполнена при финансовой поддержке Красноярского краевого фонда науки (проект 6F0157).

Список литературы

- С.В. Мельникова, В.А. Гранкина, В.Н. Воронов. ФТТ 36, 4, 1126 (1994).
- [2] S.V. Melnikova, A.D. Vasiliev, V.A. Grankina, V.N. Voronov, K.S. Aleksandrov. Ferroelectrics 170, 139 (1995).
- [3] K. Kawamura, A. Kuramashi, N. Nakamura, H. Kasano, H. Mashijama, S. Nakanishi, H. Itoh. Ferroelectrics 105, 279 (1990).
- [4] Y. Syiroishi, A. Nakata, S. Sawada. J. Phys. Soc. Jap. 40, 911 (1976).
- [5] P.E. Tomaszewski, K. Lukaszewicz. Phys. Stat. Sol. (a) 71, K53 (1982).
- [6] P.E. Tomaszewski. Phase Trans. 4, 37 (1983).
- [7] Li Yin-Yuan. Solid State Commun. 51, 6, 355 (1984).
- [8] S. Bhakay-Tanhane, C. Karunakaran, C. Vaidyo. High Temp. High Pres. 16, 91 (1986).
- [9] W. Kleeman, F.J. Schäfer, A.S. Chaves. Solid State Commun. 64, 7, 1001 (1987).
- [10] U.A. Leitão, A. Righi, P. Bourson, M.A. Pimenta. Phys. Rev. B50, 5, 2754 (1994).
- [11] R.L. Moreira, P. Bourson, U.A. Leitão, A. Righi, L.C.M. Belo, M.A. Pimenta. Phys. Rev. B52, 12 591 (1995).
- [12] S. Fujimoto, N. Yasuda, H. Hibino. Phys. Lett. A104, 1, 42 (1984).