Низкотемпературный переход металл–диэлектрик и магнитные свойства в неупорядоченной системе V_xMn_{1-x}S

© Г.В. Лосева, Л.И. Рябинкина, С.С. Аплеснин, А.Д. Балаев, А.Ф. Бовина, А.М. Воротынов, К.И. Янушкевич

Институт физики им. Л.В.Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

(Поступила в Редакцию 14 февраля 1997 г.)

Проведены исследования структуры, электрических и магнитных свойств неупорядоченной системы $V_x Mn_{1-x}S$. Для составов с 0.4 < x < 0.5, находящихся в состоянии Ферми-стекла, установлено существование низкотемпературного перехода металл–диэлектрик (ПМД) в парамагнитной фазе, который сопровождается изменением структуры и магнитных свойств. Анализ магнитных свойств позволил предположить, что в исследуемых твердых растворах в области температур ПМД происходит делокализация носителей тока с образованием малых областей с ферромагнитным упорядочением (ферронов).

В неупорядоченных системах при изменении состава, давления, температуры, магнитного поля возможна реализация перехода металл-диэлектрик (ПМД) типа Андерсона за счет изменения положения уровня Ферми E_F и порога подвижности E_c (E_c — энергия, отделяющая локализованные состояния от нелокализованных) и последующего их пересечения [1].

Для неупорядоченных систем легированных и примесных полупроводников установлено состояние Фермистекла, когда при $T \rightarrow 0$ плотность состояний $N(E_F) \neq 0$, а состояния с энергией E_F локализованы вследствие беспорядка. При этом низкотемпературная прыжковая по локализованным состояниям проводимость изменяется по закону Мотта $\sim 1/T^{1/4}$ [1,2].

В [3] было показано, что в неупорядоченной системе антиферромагнитных полупроводников $V_x Mn_{1-x}S$ для составов с $0 < x \leq 0.5$ при критическом $x_c \approx 0.5$ реализуется переход полупроводник–полуметалл по концентрации. Анализ электрических свойств исследуемых твердых растворов $V_x Mn_{1-x}S$ показал, что в области температур 80 < T < 180 К проводимость следует закону Мотта, что характерно для Ферми-стекла [4].

В настоящей работе сообщаются результаты исследований в области температур 80-300 К структуры, электрических и магнитных свойств системы V_xMn_{1-x}S для составов, близких к x_c (0.4 < x < 0.5), с целью выявления низкотемпературного ПМД.

Образцы синтезировались из чистых элементов путем отжига в вакуумированных кварцевых ампулах при 1173 К в течение недели. Согласно данным рентгеноструктурного анализа, проведенного на установке ДРОН-2.0 (Си-излучение), составы с $0 < x \leq 0.5$ при 300 К представляют собой твердые растворы с ГЦК-решеткой α -MnS (структура NaCl) [5]. На рис. 1 представлена температурная зависимость параметра элементарной ячейки *а* твердого раствора V_{0.45}Mn_{0.55}S (x = 0.45) в области температур 80–300 К. Характер изменения a(T) для исследуемого состава (x = 0.45) аналогичен изменению a(T) для моносульфида α -MnS (x = 0) [6]. Полученные результаты позволяют сделать предположение, что структурный переход из кубической

в ромбоэдрическую фазу в V_{0.45}Mn_{0.55}S происходит в интервале температур 140–163 K, что согласуется с магнитооптическими исследованиями монокристалла α -MnS синтезированного нами методом насыщения жидкого марганца серой [7].

Измерения удельного электросопротивления ρ , проведенные четырехзондовым потенциометрическим методом на постоянном токе в интервале температур 80- $300 \,\mathrm{K}$, показали, что составы с 0 < x < 0.5 являются примесными полупроводниками. Возрастание концентрации ванадия x в образцах ведет к металлизации системы с уменьшением величины ρ на пять порядков при 300 К и на 10 порядков при 80 К. При $x_c \approx 0.5$ реализуется ПМД по концентрации типа Андерсона [4]. Установлено, что при понижении температуры для этих составов наблюдается изменение характера температурной зависимости ρ от экспоненциальной $(\exp(1/T))$ к моттовской $(1/T^{1/4})$. При этом температура, ниже которой происходит отклонение от экспоненциальной зависимости, возрастает с увеличением х. Подобное низкотемпературное поведение $\rho(T)$ характерно для неупорядоченных систем легированных кристаллических полупроводников, напоминающих по своим свойствам аморфные системы [2].

На рис. 1 представлена температурная зависимость $\rho(T)$ для x = 0.45. Из этого рисунка видно, что в области температур 150–180 К имеет место аномалия

Рис. 1. Температурные зависимости параметра решетки (I) и удельного электросопротивления (2) твердого раствора V_{0.45}Mn_{0.55}S.

удельного электросопротивления, которая сопровождается изменением типа проводимости от полупроводника к полуметаллу. Состав с x = 0.45 близок к критическому составу концентрационного ПМД ($x_c \sim 0.5$). Аномалия $\rho(T)$ при x = 0.45 находится в области состояния Ферми-стекла и сопровождается изменениями структуры при 140–163 К.

Металлизация системы твердых растворов V_xMn_{1-x}S сопровождается изменением их магнитных свойств. С увеличением концентрации ванадия х от 0.05 до 0.5 величина $1/\chi$ возрастает в ~ 1.8 раза, парамагнитная температура Кюри Θ изменяется от -970 до -304 K, а температура T_N уменьшается от 150 до 125 К. При этом концентрационному ПМД при $x_c \sim 0.5$ предшествует изменение типа антиферромагнитного (AFM) порядка при $x_c = 0.3$ [3]. Магнитная фазовая диаграмма системы V_xMn_{1-x}S, построенная на основе экспериментальных данных и расчетов методом Монте-Карло, включает три типа AFM-упорядочения в ГЦК-решетке и антиасперромагнитное состояние (неколлинеарная антиферромагнитная структура) [5]. Изучаемые составы с 0.4 < x < 0.5 находятся в антиасперромагнитном состоянии в области $T < T_N$, а аномалия электросопротивления происходит в парамагнитной фазе ($T > T_N$) и сопровождается изменением магнитных свойств. В области аномалии $\rho(T)$ (~ 180 K) для x = 0.45 в поле 4.5 kOe наблюдается отклонение от закона Кюри-Вейсса в температурной зависимости обратной магнитной восприимчивости $1/\chi$ от T (рис. 2), при этом парамагнитная температура Кюри Ө выше 180 К составляет ~ 570 K.

На рис. 3 представлены температурные зависимости намагниченности состава с x = 0.45. Измерения проведены на автоматизированном магнитометре со сверхпроводящим соленоидом в интервале температур 4.2–200 К в полях 50 Ое, 20 Ое и 10 kOe. Из этого рисунка видно, что во всех полях имеют место резкое возрастание намагниченности σ в области T < 25 К и аномалии $\sigma(T)$ при ~ 50 и ~ 130 К. При этом если аномалия $\sigma(T)$ в области $T_N \sim 130$ К имеет место во всех полях измерений, то аномалия при ~ 50 К исчезает при H = 10 kOe.

Рис. 2. Температурная зависимость обратной магнитной восприимчивости $V_{0.45}$ Mn_{0.55}S в поле H = 4.5 kOe.

Рис. 3. Температурные зависимости намагниченности $V_{0.45}Mn_{0.55}S$ в полях H = 0.05 (1), 0.2 (2) и 10 kOe (3).

Ранее [5], используя модель Гейзенберга с локализованными спинами на ионах V и Mn, мы объяснили магнитные свойства $V_r Mn_{1-r} S$ при T > 80 K. Измерение восприимчивости и кривых намагничивания M(H) приводит к необходимости расширения модели и учета взаимодействия между носителями тока и локализованными спинами в рамках *s*-*d*-модели. Для легированных антиферромагнитных полупроводников Нагаевым [8] разработана теория автолокализации носителей тока, которая приводит к магнитной неоднородности кристалла. Согласно этой теории, в AFM-матрице имеются ферромагнитные (FM) области, в которых сосредоточены электроны проводимости, стремящиеся установить FM-порядок. Положительный косвенный обмен конкурирует с отрицательным обменом между магнитными атомами, вызывающим AFM-упорядочение, и энергией квантования электронного движения в ограниченных объемах. Радиус FM-области (феррона) составляет несколько постоянных решетки.

Предположим, что в соединении $V_x Mn_{1-x}S$ образуются ферроны, которые слабо взаимодействуют с антиферромагнитной матрицей. Это взаимодействие перенормируем в эффективное поле анизотропии. Рассмотрим модель: в антиферромагнитной матрице расположены ферромагнитные области, ориентированные по направлению оси одноосной анизотропии. Поскольку исследуются поликристаллические образцы, оси анизотропии распределены равномерно в интервале углов $0 \le \varphi \le \pi$. Тогда гамильтониан имеет вид

$$H = -\sum_{i=1}^{N} Hm_i \cos \vartheta_i - \sum_{i=1}^{N} D_i m_i^2 \cos^2(\varphi_i - \vartheta_i) - H_{\text{AFM}}, \quad (1)$$

где m_i — момент феррона, ϑ_i — угол между моментом феррона и внешним полем H, D_i — константа одноосной анизотропии.

В настоящей работе используется метод Монте-Карло [9] для классических систем и ансамбля частиц Вычислены энергия, намагниченность, N = 2048.восприимчивость. Распределение осей анизотропии осуществлялось с помощью датчика случайных чисел. Восприимчивость антиферромагнитной матрицы рассчитывалась в полях $H \perp z$ и $H \parallel z$ и для поликристалла с $\chi_{\rm AFM} = 2/3\chi_{\perp} + 1/3\chi_{\parallel}$. Общая восприимчивость χ_c состоит из восприимчивости феррона χ_F с концентрацией c и антиферромагнитной восприимчивости χ_{AFM} с концентрацией 1 - c, т.е. $\chi_c = c \chi_F + (1 - c) \chi_{AFM}$. Варьируя параметры феррона (момент *m_i*, величина анизотропии D_i), можно добиться наилучшего совпадения теоретически рассчитанной восприимчивости с экспериментальной, изображенной на рис. 4.

Наиболее хорошее согласие достигается при m = 60S $(S - спин иона Mn^{2+}), D = 0.02 K и концентрации$ ферронов с = 0.07. Максимум восприимчивости для $V_{0.45}$ Mn_{0.55}S при $T_1 = 50$ K в слабых магнитных полях, когда зеемановская средняя энергия меньше энергии анизотропии, т.е. $mH \ll Dm^2$, обусловлен блокировкой ферронов по осям анизотропий. При $T \ll T_1$ моменты ферронов в основном ориентированы по осям анизотропий, и общая намагниченность в слабом поле незначительно меняется с температурой. Когда значение температуры достигает одного порядка с величиной энергии анизотропии $T_1 \approx E_A/6$, восприимчивость феррона уменьшается и изменяется согласно закону Кюри-Вейсса. В больших полях H > Dm моменты ориентированы в основном по полю, и восприимчивость с температурой изменяется по закону Кюри-Вейсса. Резкое возрастание восприимчивости при $T \to 0$ в слабых полях вызвано

Рис. 4. Температурная зависимость нормированной величины восприимчивости при температуре Нееля для $V_{0.45}Mn_{0.55}S$ в поле 10 kOe. 1 — эксперимент, 2 — расчеты методом Монте-Карло.

Рис. 5. Температурные зависимости ширины линии (I) и интенсивности магнитного резонанса (2) для V_{0.45}Mn_{0.55}S.

разбросом моментов ферронов, который в данной модели не учитывается, т. е. существует часть ферронов, у которых энергия анизотропии сравнима с их зеемановской энергией. При $T > T_N$ ферроны разрушаются, носители тока делокализуются, что соответственно отражается на восприимчивости, имеющей при $T \sim 180$ К слабый излом (рис. 2), и $1/\chi$ хорошо аппроксимируется законом Кюри–Вейсса с парамагнитной температурой Кюри $\Theta = -570$ К. В этой же области температур (~ 180 К) наблюдается ПМД по температуре в V_{0.45}Mn_{0.55}S.

Существование парамагнитных кластеров (ферронов) ниже температуры Нееля подтверждается измерениями электронного парамагнитного резонанса (ЭПР). Измерения проводились на стандартном ЭПР-спектрометре SE/X-2544 ($\nu = 9.4\,{\rm GHz}$) в интервале температур 100-300 К. Исследовались температурные зависимости ширины линии и интенсивности магнитного резонанса. На рис. 5 представлены результаты измерений для V_{0.45}Mn_{0.55}S. При комнатной температуре форма линии отличается от лоренцевой, что объясняется одновременным существованием двух сигналов магнитного резонанса с g-фактором, равным 2.00 [10]. При приближении к $T_N \sim 130 \,\mathrm{K}$ основная линия магнитного резонанса уширяется и становится трудно наблюдаемой, что означает установление дальнего магнитного порядка. При этом наблюдается второй сигнал магнитного резонанса со слабой интенсивностью, обусловленный малой частью ионов Mn^{2+} , остающейся парамагнитной ниже T_N [10]. Характерное значение g-фактора, равное 2.00, позволяет с уверенностью предположить, что оба сигнала обусловлены ионами Mn²⁺. Из отношения интенсивностей ЭПР сигнала при 100 и 300 К можно рассчитать концентрацию парамагнитных кластеров, которая равна $I_{100\,{
m K}}/I_{300\,{
m K}} \approx 0.08$, что согласуется с теоретически рассчитанной концентрацией ферронов (~ 0.07).

Зависимости намагничивания от поля M(H) для $V_{0.45}Mn_{0.55}S$ являются нелинейными в магнитоупоря-

доченной области, что связано с ориентацией достаточно больших магнитных моментов по полю до $N \leq H_c \approx 20$ kOe. Когда магнитное поле превышает поле анизотропии H_c , рост намагниченности в зависимости от поля связан с поворотом магнитных моментов подрешеток антиферромагнитной матрицы и имеет линейный вид. Экспериментальное значение $H_c \approx 20$ kOe хорошо согласуется с теоретически вычисленным методом Монте-Карло (MC) $H_c^{MC} = DmS \approx 22$ kOe. Величина намагниченности, оцененная из экстраполяции кривой $\sigma(H)$ в сильных полях $H \ge 20$ kOe к H = 0, составляет ~ 0.18 G · cm³/g.

Таким образом, в системе антиферромагнитных полупроводников $V_x Mn_{1-x}S$ с ГЦК-решеткой α -MnS составы с 0.4 < x < 0.5 (близкие x_c), находящиеся в состоянии Ферми-стекла, претерпевают в области температур 150–180 К переход полупроводник–полуметалл (ПМД), который сопровождается изменениями структуры и магнитных свойств. В области ПМД в твердом растворе $V_x Mn_{1-x}S$ происходит делокализация носителей тока с образованием малых областей с ферромагнитным упорядочением (ферронов). Это приводит к нелинейному виду кривой намагничивания M(H) и появлению максимума восприимчивости в слабых полях при $T \sim 50$ К, вызванного блокировкой ферронов по осям анизотропий.

Список литературы

- [1] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. М. (1982). Т. 1. 368 с.
- [2] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников. М. (1979). 416 с.
- [3] G.A. Petrakovskii, G.V. Loseva, L.I. Ryabinkina, S.S. Aplesnin. J. Magn. Magn. Mater. 140–144, 147 (1995).
- [4] Г.А. Петраковский, Г.В. Лосева, Л.И. Рябинкина, Н.И. Киселев, К.И. Янушкевич. ФТТ 38, 7, 2131 (1996).
- [5] Г.А. Петраковский, С.С. Аплеснин, Г.В. Лосева, Л.И. Рябинкина, К.И. Янушкевич, А.В. Баранов. ФТТ 35, 8, 2225 (1993).
- [6] H.H. Heikens, G.A. Wiegers. C.F. van Bruggen. Solid State Commun. 24, 3, 205 (1977).
- [7] А.В. Малаховский, Т.П. Морозова, В.Н. Заблуда, Л.И. Рябинкина. ФТТ **32**, *4*, 1012 (1990).
- [8] Э.Л. Нагаев. Физика магнитных полупроводников. М. (1979). 432 с.
- [9] К. Биндер. Методы Монте-Карло в статистической физике.
 М. (1982). 396 с.
- [10] А.М. Воротынов, Г.В. Лосева. ФТТ **38**, *3*, 933 (1996).

Физика твердого тела, 1997, том 39, № 8