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Abstract
In the framework of the generalized tight binding method we have calculated the
quasiparticle band structure and the spectral functions of the undoped cuprates
such as La2CuO4, Sr2CuO2Cl2 etc. Due to spin fluctuations the in-gap state
appears above the top of the valence band in the undoped antiferromagnetic
insulator similar to in-gap states induced by hole doping. In the ARPES
experiments the in-gap states can be detected as weak low energy satellites.

1. Introduction

The key issue to understand the nature of high temperature superconductivity in the cuprates is
the evolution of the electronic structure from an antiferromagnetic insulator to a superconductor
with hole doping. The appearance of the in-gap states above the top of the valence band in
slightly doped cuprates has been found experimentally [1–4]. In the metallic underdoped
regime the ARPES measurements [5] reveal the concentration dependent band structure of Bi-
2212. With improving ARPES resolution recently the formation of new quasiparticle states at
the transition from insulator to metal in La2−x Srx CuO4 has been found [6, 7].

The formation of the in-gap states with doping has been obtained theoretically in the
numerical studies of small clusters in the framework of the t–J model, Hubbard model, and
the three-band p–d model [8–11]. The band structure calculations of the CuO2 layer in the
framework of the multiband p–d model by the generalized tight-binding (GTB) method [12]
with account for strong electron correlations have revealed the unusual in-gap state at the top of
the valence band with zero spectral weight for undoped insulators that acquire the dispersion
and non-zero spectral weight with hole doping [13]. In all models of strongly correlated
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electrons the hopping of holes in the antiferromagnetic background is renormalized by spin
fluctuations. To clarify the origin of the in-gap state we have studied in this paper a spin-
polaron effect both analytically in the framework of the t–t ′–J model and numerically by the
GTB method similar to [13]. We have found that the spin fluctuations as well as hole doping
provide non-zero spectral weight and dispersion of the in-gap state—even without doping,
the spin excitations that are present in the antiferromagnetic state due to the quantum spin
fluctuations at all temperatures including T = 0 result in non-zero in-gap spectral weight
and dispersion above the top of the valence band. This state can be detected by the ARPES
measurement as a weak satellite at the low energy shoulder of the main peak. Moreover, the
concentration of spin fluctuations nsf increases with temperature, and we expect the growth of
the in-gap spectral weight ∼nsf .

2. GTB method results

A dispersion equation of the GTB method for the quasiparticle band structure of the CuO2

layer looks like [13]∥∥∥∥(E − �A
m)δmn − 2FA

σ (m)
∑
λλ′

γ ∗
λσ (m)T AB

λλ′ (�k)γλ′σ (n)

∥∥∥∥= 0. (1)

Here m is a quasiparticle band index given by a pair (p, q) of the initial and final multielectron
configurations E p(n +1) and Eq(n); �m = E p(n +1)− Eq(n) is a local excitation energy. The
local excitation |q〉 → |p〉 is described by the Hubbard operator X pq = |p〉〈q|; filling factor
F(m) = 〈X pp〉 + 〈Xqq 〉. Two magnetic sublattices are denoted by indices A and B, and σ is
a spin projection. The interatomic hopping is T AB

λλ′ , where the single-hole basis set λ includes
five orbitals, copper d(x2–y2), d(3z2–r2), in-plane oxygen p(x), p(y) and apical oxygen p(z);
γλσ (m) is a parameter of a single-hole annihilation operator in terms of the Hubbard operators

aλσ =
∑

m

γλσ (m)Xm . (2)

The local multielectron energies and parameters γλσ (m) are obtained after the exact
diagonalization of the multiband p–d model Hamiltonian for the unit cell. In our case the
unit cell is a CuO2 cluster for La2CuO4 and CuO4Cl2 for Sr2CuO2Cl2. A similar equation has
been known for a long time for the non-degenerate Hubbard model as the Hubbard I solution
and has been used recently to study magnetic properties of transition metals [14, 15].

The essential multielectron configurations for undoped cuprates are d10p6 (vacuum state |0〉
in a hole representation),single-hole configurations d9p6 and d10p5 and two-hole configurations
d8p5, d9p5, d10p4 and d10p5p5. The minimal energy in the single-hole sector of the Hilbert
space has the b1g molecular orbital, and in the two-hole sector the 1A1g singlet that besides the
Zhang–Rice singlet contains several more local singlets. A staggered magnetic field splits b1g

levels by spin:

εAσ = ε1 − σh, εBσ = ε1 + σh. (3)

The top of the valence band is given by the quasiparticles with m = 1 : X1
A = |b1g,↑〉〈1A1g| and

X1
B = |b1g,↓〉〈1A1g|, as there is usually spin degeneracy of the band in the antiferromagnetic

state. The occupation numbers n p ≡ 〈X pp〉 are calculated self-consistently via the chemical
potential equation. In the mean-field Hubbard I approximation the solution of this equation
for the hole-doped cuprates with hole concentration nh = 1 + x is given by

n1↑ ≡ nA↑(b1g) = 1 − x, n1↓ = 0, n2 ≡ n(1A1g) = x . (4)

For the band m = 1 we get FA↑(1) = 1 while for the band m = 2 with X2
A = |b1g,↓〉〈1A1g|

the filling factor is FA↓(2) = x . The quasiparticle spectral weight is proportional to the
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filling factor, thus it is the band m = 2 that forms the in-gap state. In the limit x → 0 its
spectral weight is zero; when x �= 0 this band acquires both dispersion and non-zero spectral
weight. The corresponding concentration-dependent band structure has been obtained for
La2−x Srx CuO4 in [13] and the chemical potential µ(x) dependence and the Fermi surface
evolution with doping have been studied in [16].

To go beyond the mean-field Hubbard I approximation one has to calculate single-loop
diagrams for the self-energy [17]. In the ferromagnetic or antiferromagnetic state the most
important contribution is given by loops with spin-wave excitations [18] (a spin-polaron
effect). According to [18], the main effect of the spin excitations is given by the spin-wave
renormalization of the multielectron configuration’s occupation numbers, so instead of (4) one
gets

n1↑ = (1 − x)(1 − nsf), n1↓ = (1 − x)nsf , n2 = x, (5)

where nsf is the occupation of the spin-minority level and it determines the spin-fluctuation
decrease of the sublattice magnetization

〈Sz
A〉 = (1 − x)(1/2 − nsf). (6)

Concentration of the spin fluctuations (magnons) is equal to 2nsf .
Thus the filling factor for the valence band F(1) = 1 − nsf , and for the in-gap states

F(2) = x + nsf . This means that the spin-polaron effect results in non-zero spectral weight of
the in-gap states even for undoped cuprates La2CuO4 and Sr2CuO2Cl2.

In [21] the value nsf = 0.2 was obtained self-consistently in the effective quasi-two-
dimensional Heisenberg antiferromagnetic model for a ratio typical in La2CuO4 of 10−5 of
the interplane and intraplane exchange parameters. From the neutron diffraction studies of
La2CuO4 [22] and YBa2Cu3O6 [23] it is known that the value of magnetic moment on copper
MCu is given by MCu ≈ 0.5 µB where µB is the Bohr magneton. There are two reasons for
the MCu difference from the value 1.14 µB in Cu2+, namely the zero-temperature quantum
fluctuations and the covalent effects. Since each oxygen has two neighbouring coppers
belonging to different magnetic sublattices the total moment on oxygen is equal to zero. But
due to p–d hybridization the p states of oxygen are partially filled so these orbitals could carry
non-zero magnetic moment MO, while the total moment on oxygen will be equal to zero. Such
space distribution of magnetic moment leads to a difference between the MCu experimentally
observed and calculated from the simple Heisenberg model. Therefore, the value nsf = 0.2 is
overestimated. In order to take into account covalent effects and zero quantum fluctuations on
equal footing we will write down the expression for MCu:

MCu = 2.28 µB〈Sz
A〉u2, (7)

where zero quantum fluctuations are contained in 〈Sz
A〉 and covalent effects are described by

the weight u2 of the d9p6 configuration. The last quantity could be calculated in the framework
of the GTB method and is given by u2 = 0.6061. Using equations (7) and (6) it is possible to
calculate nsf , which for the experimentally observed MCu = 0.5 µB is equal to nsf = 0.138.
In the present paper we will use this value of nsf .

The quasiparticle band structure and the spectral functions for the undoped La2CuO4 with
nsf = 0.138 are given in figure 1. The band formed by hole hopping via the two-hole triplet
3B1g state lies at ≈−1.4 eV and is not shown here (the physics of this state was discussed in
detail in [13, 19]). The lowest band in figure 1 is the top of the valence band (m = 1) without
spin fluctuations with a maximum at k = (π/2, π/2). The upper band (m = 2) is formed by
the dispersion of the in-gap states. Despite its width each state has a low spectral weight as
seen in figure 1(b) and the total number of states in this in-gap band (without doping) is equal
to nsf . The appearance of such non-Fermi liquid states is the direct effect of strong electron
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Figure 1. The quasiparticle band structure (a) and the spectral function (b) of the undoped La2 CuO4
with a spin fluctuation nsf = 0.138 calculated by the GTB method. The Fermi level is above all
bands shown here.

correlations. The maximal spectral weight of the in-gap state is near the (π, 0) point of the
Brillouin zone (BZ). At the (π/2, π/2) point the two bands are degenerate, and we cannot
separate the contribution of the in-gap band to the spectral function Ak(E).

3. t–t′–J model treatment

To clarify the properties of the in-gap band we study the spin-polaron effect in the t–t ′–J
model, which is an effective low energy model for the multiband p–d model [20], with the
Hamiltonian

Ht−J = (ε1 − µ)
∑
f,σ

Xσσ
f +

∑
〈 f,g〉,σ

t f g Xσ0
f X0σ

g +
∑
〈 f,g〉

J f g(S f Sg − 1
4 n f ng), (8)

where S f are spin operators and n f are numbers of particle operators; t f g and J f g are the
hopping and exchange integrals respectively. In the Hubbard I approximation it is easy to
obtain in the undoped case the following intrasublattice and intersublattice Green functions
( f ∈ A, g ∈ B):

〈〈X0σ
f |Xσ0

f ′ 〉〉E = 2

N

∑
k

GAA
kσ (E)ei�k( �f − �f ′),

〈〈X0σ
g |Xσ0

f ′ 〉〉E = 2

N

∑
k

GBA
kσ (E)ei�k(�g− �f ′).

The matrix Green function in momentum space could be written as

Ĝkσ =
(

GAA
kσ GAB

kσ

GBA
kσ GBB

kσ

)
= 1

D

(
nAσ (E − εB

kσ ) nAσ nBσ tB
k

nAσ nBσ tB
k nBσ (E − εA

kσ )

)
, (9)

where D = (E − E+
kσ )(E − E−

kσ ) and εα
kσ = (ε1 −µ)−(J B

0 − tA
k )nασ − J A

0 nασ̄ , with α = A, B.
Here tB

k and tA
k (J B

0 and J A
0 ) are the hoppings (exchanges) in momentum space between

different and the same sublattices respectively. In the simple case of the next nearest neighbour
approximation we have
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tB
k = 2t (cos kx + cos ky), tA

k = 4t ′ cos kx cos ky, J B
0 = 4J, J A

0 = 4J ′,

with primed values corresponding to next nearest hoppings and exchanges. The occupation
factors of the one-particle state with different spin projections are denoted by nAσ and nBσ . In
the mean field Hubbard I approximation nA↑ = (1 − nsf) and nA↓ = 0 at T = 0. Using the
same arguments as in section 2, we go beyond the Hubbard I approximation by renormalization
of the occupation numbers with spin fluctuations. For the undoped La2CuO4 this results in

nA↑ = (1 − nsf), nA↓ = nsf , nBσ = nAσ̄ . (10)

The condition D = 0 gives two branches of the quasiparticle spectrum:

E±
k↑ = ε1 − µ + 1

2 [tA
k − J B

0 − J A
0 ± βk] (11)

where

βk =
√

(tA
k − J B

0 + J A
0 )2(1 − 2nsf)2 + 4(tB

k )2(1 − nsf)nsf .

If we set the concentration of the magnons to zero we immediately get one dispersionless state
and one dispersive state with dispersion governed by intrasublattice hoppings:

E+
k↑|nsf=0 = ε1 − µ − J A

0 , E−
k↑|nsf=0 = ε1 − µ + tA

k − J B
0 . (12)

If the values of intrasublattice hoppings and exchange are small then the difference between
two energy levels is of order J :


E |nsf=0 = (E+
k↑ − E−

k↑)|nsf=0 ≈ 4J. (13)

In figure 2(a) the quasiparticle dispersions corresponding to equations (11) and (12) are
shown. Parameters were taken from the effective low energy model [20] of the multiband
p–d model and are given by t = 0.587, t ′/t = −0.085, J/|t| = 0.392, J ′/|t| = 0.0004 and
nsf = 0.138.

The distance between two spectrum branches for non-zero concentration of the magnons
is less than distance (13) for nsf = 0 by a factor proportional to (1 − 2nsf) = 2〈Sz〉.

The lower quasiparticle branch for nsf = 0.138 (but not for nsf = 0!) clearly resembles the
dispersion obtained in the self-consistent Born approximation [24] and the GTB method [13].
This proves that two different approaches to treat spin fluctuations lead to similar results.

Introducing the energy difference 
Ek ≡ E+
k↑ − E−

k↑ we can write down spectral functions

Akσ (E) = − 1
π

Im [SpĜkσ ] in the form

Ak↑(E) = u2
kδ(E − E+

k↑) + v2
k δ(E − E−

k↑), (14)

Ak↓(E) = v2
k δ(E − E+

k↓) + u2
kδ(E − E−

k↓), (15)

where

u2
k = 1

2
− (1 − 2nsf)

2 (J B
0 − J A

0 − tA
k )

2
Ek
, v2

k = 1 − u2
k .

Obviously, for nsf = 0 the value u2
k = 0, v2

k = 1 and there will be the non-zero spectral
function Ak↑(E) = δ(E − E−

k↑) corresponding to only one dispersive state (12). In figure 2(b)
the spectral functions versus energy for different symmetric points in momentum space are
shown. Comparison of spectral intensities in the case of the presence and absence of nsf (solid
and dash–dotted curves) indicates that the second satellite peak appears above the main peak
at (π/2, π/2) and (π, 0) points. It is the satellite peak that represents the in-gap state. At the
(π/2, π/2) point the distance between two peaks is proportional to J (see equation (13)) but
at the (π, 0) point the distance is proportional to |J + t ′| (or, generally, |J B

0 − tA
k |) and will

also take place even at zero J . The last statement emphasizes the importance of next nearest
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Figure 2. Quasiparticle dispersion (a) and spectral function peaks (b) in the t–t ′–J model for
x = 0 and nsf = 0.138 (solid curves), nsf = 0 (dot–dashed curves).

neighbour hoppings t ′ at low doping. Indeed, if one considers the t–J model with only nearest
neighbour hoppings then the doped hole will not even be able to move without spin fluctuations
(nsf = 0, see equation (12)) and at low nsf the dispersion will be governed by the (tA

k − J B
0 )

term in equation (11) but not by nearest neighbour hopping tB
k . In the case of the t–J model

with t ′ = 0 the quasiparticle spectrum (11) becomes

E±
k↑|t ′=0 = ε1 − µ + 2J ± 2

√
J 2(1 − 2nsf)2 + t2(cos kx + cos ky)2(1 − nsf)nsf . (16)

One can easily see that the two branches of this spectrum have the same dispersion proportional
to (cos kx + cos ky)nsf and at nsf = 0 there will be two dispersionless states. So we conclude
that the in-gap band forms even at zero t ′ but at low magnon concentration the dispersion of
this band is governed exactly by intrasublattice hoppings (t ′, or, generally, tA

k ).
Now we will discuss the higher-order corrections to previous results. Two main effects

are expected: (i) quasiparticle decay and (ii) renormalization of the real part of the self-
energy. The main change with introduction of finite quasiparticle lifetime will be broadening
of spectral peaks. This effect is indirectly presented in figure 2(b) where the delta function
peaks in the spectral function are artificially broadened by the Lorentzian. Still, there could
be a strong energy and momentum dependence of the imaginary part of the self-energy, which
analysis is far from the scope of the present paper. To analyse the renormalization of the real
part of the self-energy we will use a more rigorous approximation—the generalized Hartree–
Fock approximation [25]. In this approximation the equation of motion for operator X0σ

f is
renormalized by two-site static correlation functions,

i
d

dt
X0σ

f = [(ε1 − µ) + M f σ ]X0σ
f +

∑
g

τ f g,σ X0σ
g , (17)
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where M f σ and τ f g,σ are the renormalized chemical potential (exchange integral) and hopping
integrals respectively:

M f σ =
∑

g

t f g〈X0σ̄
f X σ̄0

g 〉 −
∑

g

J f g[〈X00
f X σ̄ σ̄

g 〉 + 〈Xσ σ̄
f X σ̄ σ

g 〉 − 〈Xσσ
f X σ̄ σ̄

g 〉],

τ f g,σ = t f g[〈X00
f X00

g 〉 + 〈X00
f Xσσ

g 〉 + 〈Xσσ
f X00

g 〉 + 〈Xσσ
f Xσσ

g 〉 + 〈X σ̄ σ
f Xσ σ̄

g 〉] + J f g〈X0σ̄
f X σ̄0

g 〉.
It is clear that equation (17) has the same linearized form as in the Hubbard I approximation
but with renormalized chemical potential and hopping integrals. This means the qualitative
results of the Hubbard I consideration will be the same but quantitatively they may change.
Namely, due to renormalization of the exchange integral the distance between the in-gap and
main spectral peaks will be shorter than expected from (13) and a concentration dependence of
peak positions will appear due to both renormalizations. Meanwhile, the underlying physics
of the in-gap state will be unchanged and its dispersion will be governed by spin fluctuations.

4. Conclusion

It is clear from the spectral function both in figures 1(b) and 2 (b) that there is a pseudogap
between the in-gap band and the valence band; for the undoped cuprate both bands are occupied
and the chemical potential lies above the in-gap band. With doping µ(x) is pinned to the in-gap
state [16] up to optimal doping. The pseudogap is k-dependent. At the (π/2, π/2) point of
the BZ the value of the gap is given by 
E(π/2, π/2) ∼ J (1 − 2nsf), while at the (π, 0)

point 
E(π, 0) ∼ |J + t ′|(1 − 2nsf). In the p–d model we have not considered the interband
excitations between the lower and upper Hubbard bands (full filled valence band for electrons
and empty conductivity band) forming the effective J ∼ t2/U ; this means equation (1) and
its solution were obtained in the U → ∞ limit. In the t–J model we considered a finite value
of U ; that is why there is a difference in the spectral functions in figures 1 and 2. In the limit
U → ∞ (J → 0) the mentioned difference disappears—we get 
E(π/2, π/2) → 0 and

E(π, 0) → |t ′|(1 − 2nsf), that corresponds to figure 1(b). At J �= 0 there is the additional
contribution to the pseudogap, and we may expect the in-gap satellite both at (π/2, π/2) and
(π, 0) points of the BZ.

In conclusion, we have shown that the spin-polaron effect results in the formation of the
in-gap band above the top of the valence band even in the undoped cuprates. Previously, the
evidence for the in-gap states was found only in lightly doped La2−x SrxCuO4. Our results
shows that these states should appear in all undoped antiferromagnetic cuprates, namely
La2CuO4, Sr2CuO2Cl2 and Ca2CuO2Cl2. Although the appearance of the in-gap states is
common for the high Tc substances with CuO2 planes the experimental evidence for the in-
gap states in cuprates such as Bi2Sr2CaCu2O8+δ and YBa2Cu3O7−δ could be shaded by other
stronger effects due to the more complicated structure of these compounds (non-stoichiometry,
presence of oxygen chains in YBCO, etc). The spectral function of the in-gap states has the
form of a small low energy satellite that can be detected by ARPES measurements. The most
interesting for the ARPES studies are the (π, 0) and (π/2, π/2) points of the BZ. For the
hole-doped cuprates there are two contributions to the in-gap spectral weight: the mean-field
contribution is given by doping concentration x and the spin-fluctuation contribution is given
by the magnon concentration 2nsf . The latter is temperature dependent, resulting in increasing
satellite intensity with temperature growth.
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