Структурные фазовые переходы в кристалле Cs₃Sb₂I₉

© И.П. Александрова, А.А. Суховский, Х.Х. Мелеро*, Х. Бартоломе*, С.В. Мельникова, Л.И. Шабанова, А.И. Зайцев

Институт физики им. Л.В.Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия * Университет г. Сарагоса, 50009 Сарагоса, Испания

(Поступила в Редакцию 23 декабря 1996 г.)

В гексагональном Cs₃Sb₂I₉ обнаружена последовательность из двух фазовых переходов при 85.3 ± 0.6 и 72.6 ± 0.4 К. Проведены ЯКР ¹²⁷I и оптические поляризационные исследования, тепловые свойства, коэффициенты линейного расширения и упругие константы измерены в широком интервале температур ниже комнатной.

Слоистые кристаллы семейства А₃В₂І₉ (где А — ион щелочного металла, B = Fe, As, Sb, Bi, Tl, Cr, W, Мо, X = Cl, Br, I) хорошо исследованы при комнатной температуре и классифицированы по типам встречающихся структур [1]. Однако сведения о существовании фазовых переходов в этих кристаллах очень скудны и носят предварительный характер [2]. Недавно в гексагональном Cs₃Bi₂I₃ нами был обнаружен фазовый переход в несоразмерную фазу и измерены аномалии физических свойств [3,4]. Это стимулировало дальнейшие исследования соединений A3B2X9 и в первую очередь соединений, изоструктурных с Сѕ₃Ві₂І₉. В данной работе проведены исследования спектров ЯКР ¹²⁷I, измерения тепловых и упругих свойств, линейного расширения, поляризационно-оптические наблюдения в Cs₃Sb₂I₉ в широком интервале температур.

1. Экспериментальные данные

Кристаллы $Cs_3Sb_2I_9$ выращивались методом Бриджмена в кварцевых, заполненных аргоном ампулах. Исходные реактивы CsI и SbI₃, предварительно очищенные, брались в стехиометрическом соотношении. Монокристаллы имеют темно-вишневый цвет и прозрачны только в слоях толщиной ~ 0.1 mm. Кристалл очень мягок, плохо поддается обработке, но не гигроскопичен.

1) Ядерный квадрупольный резонанс (ЯКР). Измерения частот ЯКР 127 І производились методом спинового эха на спектрометре ИСШ-1 в области температур 77-300 К. Образцом служила блочная ростовая буля Cs₃Sb₂I₉, полученная методом Бриджмена, что исключило нежелательную механическую обработку образца. При комнатной температуре наблюдаются две линии ЯКР на частотах $\nu_1 = 101.85 \text{ MHz}$ и $\nu_2 = 133.05 \text{ MHz}$. Первые признаки изменения формы линии ν_2 (ее уширение и падение пиковой интенсивности) появляются около 87.4 К; при 86.0 К уже четко видно расщепление этой линии на триплет, разрешение которого возрастает с понижением температуры (рис. 1,2). Низкочастотная линия в пределах точности измерений остается синглетом вплоть до 77 К. Из рис. 1 и 2 следует, что при температуре $T_{c1} = 86 \pm 1$ К имеет место фазовый переход второго рода. Число линий в спектре ниже перехода, по-видимому, равно четырем, так как ширина низкочастотной компоненты ν_1 и ее пиковая интенсивность не изменяются ни в точке перехода, ни при более низких температурах, где температурная зависимость параметра порядка должна была бы привести к уширению линии, состоящей более чем из одной компоненты.

2) Калориметрические измерения. Измерения теплоемкости Cs₃Sb₂I₉ были выполнены в интервале температур 50-300 К с использованием калориметра SinkuACC-1VL. Относительные величины теплоемкости пересчитывались в абсолютную шкалу сопоставлением с измерениями, сделанными на дифференциальном сканирующем калориметре Perkin Elmer DSC7 в области комнатной температуры. На кривой теплоемкости $C_p(T)$ (рис. 3) наблюдаются четкий пик при $T_{c2} = 72.6 \pm 0.4$ К и широкая аномальная область между пиком и температурой, равной примерно 90 К. Температурная зависимость решеточной теплоемкости аппроксимировалась гладкой полиномиальной функцией, совпадающей с экспериментальной кривой вне аномального района в интервале температур 60-110 К. На вставке к рис. 3 показана температурная зависимость избыточной теплоемкости, полученная после выделения решеточной части. Ступенчатая аномалия в районе 90-86 К совпадает с областью фазового перехода, обнаруженного методом ЯКР. Тем-

Рис. 1. Температурная зависимость частот ЯКР ¹²⁷ I в Cs₃Sb₂I₉.

Рис. 2. Форма линии ЯКР ν_2 при различных температурах. *T* (K): I = 79.6, 2 = 84.8, 3 = 86.0, 4 = 87.4, 5 = 93.8.

Рис. 3. Кривая теплоемкости Cs₃Sb₂I₉. Тонкая сплошная линия — решеточная теплоемкость. На врезке — избыточная теплоемкость Cs₃Sb₂I₉ в области фазовых переходов. Тонкая прямая линия выделяет область пика, учтенную при расчете его энтропии.

пература этого перехода из калориметрических данных определяется как $T_{c1} = 85.3 \pm 0.4$ К. Энтропия и энтальпия пика (область выделена прямой линией на рис. 3) составляют $\Delta S/R = 0.17$ и $\Delta H/(RK) = 11.59$. Полная энтропия и энтальпия аномальной области, включая пик, равны $\Delta S/R = 0.31$ и $\Delta H/(RK) = 22.38$. Ошибка определения указанных величин ~ 6%.

3) Оптические исследования. Поляризационно-оптические наблюдения под микроскопом проводились на прозрачных тонких сколах (001) при тщательном отборе образцов, так как из-за мягкости кристалла пластинки часто оказывались необратимо деформированными. Выбранные пластинки, не имеющие погасаний в виде пятен, охлаждались до температуры жидкого азота. Ниже 84 К образец просветляется и разбивается на области, погасающие через 60, 120°, однако четкие границы между ними не формируются вплоть до самой низкой достигаемой нами температуры (77 К). Хотя описать картину двойникования из-за этого невозможно, характер погасания указывает на понижение симметрии до нижних сингоний (ромбической, моноклинной или триклинной).

Рис. 4. Температурная зависимость линейного расширения Cs₃Sb₂I₉ вдоль направлений [100] (1) и [001] (2).

Рис. 5. Зависимость компонент тензора упругой жесткости Cs₃Sb₂I₉ от температуры.

4) Тепловое расширение и упругость. Тепловое расширение образцов размером 7 и 10 mm вдоль кристаллографических направлений [100] и [001] исследовалось на оптическом кварцевом дилатотометре с чувствительностью 120 Å и термостатированием 0.001 K в процессе нагрева от 77 до 300 К. Результаты измерений приведены на рис. 4. При температурах выше 100 К имеет место очень слабая температурная зависимость коэффициентов линейного раширения α_1 и α_3 . Ниже 100 К наблюдаются небольшие аномалии $\alpha_1(T)$ и $\alpha_3(T)$ при 84±0.6 К, а на крыле — более сильная, имеющая пик ниже 77 К. При этом коэффициент α_3 трижды проходит через нуль и изменяет знак. Точность определения точки перехода составляет половину температурного шага дилатометра ($\Delta T = 1.3 \, \text{K}$). Скорость упругих волн измерялась импульсным методом на частоте 10 MHz при погрешности определения ~ 0.5 %. Для измерений использовались описанные выше образцы. Компоненты тензора упругой жесткости рассчитывались с учетом плотности $\rho = 4.68 \,\text{G/cm}^3$. Из-за сильной слоистости кристалла были определены только четыре компоненты с11, с33, с44 и с66 из шести независимых в гексагональной симметрии.

Только продольная компонента c_{33} измерялась вплоть до температуры жидкого азота (выше и ниже фазового перехода). Затухание ультразвука не позволило приблизиться непосредственно к переходу в измерениях c_{11} и значительно усложнило работу на сдвиговых волнах. Исследования $c_{44}(T)$ удалось провести только на образцах, полученных сколом. Даже очень бережная шлифовка поверхностей (100) не позволила приблизиться к переходу ближе чем на $T-T_{c1} = 30$ К при исследовании $c_{66}(T)$. Мы объясняем это чрезвычайной мягкостью кристалла.

На рис. 5 представлены полученные результаты. Продольная компонента c_{11} в отличие от c_{33} испытывает слабую аномалию вблизи 90 К. Сдвиговая компонента c_{66} непрерывно возрастает. Скорость распространения поперечной упругой волны, определяемая компонентой c_{44} , вначале возрастает от 1125 m/s при комнатной температуре до 1165 m/s при 150 K, а затем уменьшается до 1060 m/s при 88 K.

2. Обсуждение результатов

Приведенные выше экспериментальные данные указывают на существование в $Cs_3Sb_2I_9$ двух фазовых переходов при температурах $T_{c1} = 85.3 \pm 0.6$ К и $T_{c2} = 72.6 \pm 0.4$ К. К сожалению, конструкция аппаратуры не позволила исследовать низкотемпературный фазовый переход методом ЯКР, что облегчило бы попытку установить изменение симметрии в T_{c1} и T_{c2} . Затруднение, в частности, состоит в том, что неизвестно, в какой точке зоны Бриллюэна происходят переходы. Сопоставление с данными по $Cs_3Bi_2I_9$ [4] позволяет сделать некоторые предположения. Кристаллы $Cs_3Bi_2I_9$ и $Cs_3Sb_2I_9$ изоструктурны при комнатной температуре

и имеют пространственную группу P63/mmc [1,4]. В $Cs_3Sb_2I_9$ низкочастотная компонента ν_1 соответствует "мостиковым" иодам, а высокочастотная ν_2 — "концевым" иодам, так же как в структуре $Cs_3Bi_2I_9$ [1,4]. Ниже точки перехода из гексагональной фазы линия концевых иодов в обоих соединениях расщепляется на триплет, линия мостиковых иодов в Cs₃Bi₂I₉ расщепляется на дублет, тогда как в Cs₃Bi₂I₉ ν_1 остается синглетом вплоть до 77 К. В Сs₃Bi₂I₉ между областью низких температур, где наблюдается спектр из пяти линий ЯКР, и фазовым переходом в гексагональную фазу существует промежуточная область ~ 60 K, где спектр ЯКР типичен для несоразмерной структуры. В Cs₃Sb₂I₉, если такая область и существует, она может быть порядка 1 К. Различно и поведение упругой постоянной с₄₄ в этих соединениях: в Cs₃Bi₂I₉ c₄₄ спадает почти до нуля при приближении к переходу со стороны гексагональной фазы, а в Cs₃Sb₂I₉ наблюдается лишь ее уменьшение примерно на 15% (рис. 5). Переход $P6_3/mmc \leftrightarrow P2_1/m(T_i)$ в Cs₃Bi₂I₉ происходит в центре зоны. По числу линий ЯКР ¹²⁷I, наблюдающихся в Cs₃Sb₂I₉ ниже T_{c1} , можно предположить, что переход также имеет место в центре зоны Бриллюэна, но происходит в иную структуру, чем в Cs₃Bi₂I₉.

Как было отмечено в [4], фазовый переход в несоразмерную структуру $Cs_3Bi_2I_9$ объясняется, наиболее вероятно, существованием инварианта того же типа, что и в кварце (инвариант "типа Лифшица") [5]. Необходимо иметь в виду, что инвариант типа Лифшица [5] приводит к существованию несоразмерной фазы, только если градиентное взаимодействие параметра порядка и компонент тензора упругости является достаточно сильным. Возможно, именно этим параметром определяется различие двух изоструктурных кристаллов $Cs_3Bi_2I_9$ и $Cs_3Sb_2I_9$ в области неустойчивости.

В настоящее время проводится рентгендифракционное исследование монокристаллов Cs₃Sb₂I₉.

Работа выполнена при поддержке Российского фонда фундаментальных исследований. Грант № 96-02 16542.

Список литературы

- [1] B. Chabot, E. Parthe. Acta Cryst. B34, 645 (1978).
- [2] В.С. Кун, А.А. Богуславский, А.Б. Кун, Р.Ш. Лотфуллин, В.Б. Лазарев, Е.Ю. Переш. Тез. 7-й конф. по росту кристаллов.М. (1988). Т. 3. 208 с.
- [3] S.V. Melnikova, L.A. Shabanova, A.I. Zaitsev, S.A. Parshikov, O.A. Ageev, K.S. Aleksandrov. Ferroelectrics Lett. 20, 163 (1996).
- [4] I.P. Aleksandrova, A.F. Bovina, O.A. Ageev, M.A. Popov, A.A. Sukhovsky, J. Phys. Cond. Matter. In press.
- [5] Т.А. Асланян, А.П. Леванюк. Письма в ЖЭТФ 28, 70 (1978).