# РОССИЙСКАЯ АКАДЕМИЯ НАУК ОРДЕНА ЛЕНИНА СИБИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ ФИЗИКИ им. Л.В. КИРЕНСКОГО

Препринт № 843 Ф

# Кристаллы семейства делафоссита

(Кристаллохимия, прогноз новых соединений)

Б.В. Безносиков К.С. Александров

CuFeO<sub>2</sub>



Красноярск 2007 Приводятся результаты кристаллохимического анализа структур семейства делафоссита в составах  $A^+B^{3+}X_2$ , где A и B – катионы, X – кислород. Семейство представлено двумя типами одноточечных структур: CuFeO<sub>2</sub> и  $\alpha$ -NaFeO<sub>2</sub> (*R*-3*m*, *Z* = 1). Результаты показывают, что можно синтезировать около сотни новых соединений.

Материал препринта представлен и в электронной версии публикаций Института физики им. Л.В. Киренского СО РАН на сайте http://www.kirensky.ru в разделе «препринты».

#### Оглавление

|    |                                 | Стр. |
|----|---------------------------------|------|
| 1. | Введение                        | 3    |
| 2. | Анализ структур                 | 4    |
| 3. | Структуры семейства делафоссита | 6    |
| 4. | Фазовые переходы                | 13   |
| 5. | Структуры типа NaCl и BiF₃      | 17   |
| 6. | Прогноз новых соединений        | 22   |
| 7. | Заключение                      | 27   |
| 8. | Список литературы               | 28   |
|    |                                 |      |

Работа выполнена в лаборатории кристаллофизики Института физики им. Л.В. Киренского в рамках программы ОФИ РАН № 2.5 и Программы Президента РФ по поддержке ведущих научных школ РФ (грант НШ 4137–2006.2).

© Институт физики им. Л.В. Киренского СО РАН. 2007

Список обозначений:

АВХ<sub>2</sub>, А, В, Х – атомы, ионы.

*а*, *b*, *c* – параметры элементарных ячеек.

*x/a*, *y/b*, *z/c* – координаты атомов в структуре по отношению к параметрам элементарной ячейки.

R<sub>A</sub>, R<sub>B</sub>, R<sub>X</sub> – радиусы ионов А, В, Х по системе Шеннона [1].

Z – число формульных единиц в элементарной ячейке структуры.

КЧ – координационное число.

Сингонии: *с* – кубическая, *h* – гексагональная, *rh* – ромбоэдрическая, *t* – тетрагональная, *r* – ромбическая, *m* – моноклинная.

ВТФ – высокотемпературная фаза. НТФ – низкотемпературная фаза. СрТФ – среднетемпературная фаза. ФВД – фаза высокого давления.

### 1. Введение

Первый прогноз оксидов в составах ABO<sub>2</sub> (А и В – катионы, О – кислород) был опубликован Н.Н. Киселёвой и Е.М. Савицким тридцать лет назад в 1977 г. [2], который показал, что практически во всех составах A<sup>+</sup>B<sup>3+</sup>O<sub>2</sub> вероятно образование химических соединений. Этот прогноз и все последующие [3 – 5] авторами выполнены с применением ЭВМ и методов искусственного интеллекта.

Наши «прогнозные работы» начинались в это же время. Мы занимались галоидными перовскитами ABX<sub>3</sub> (A, B – катионы, X = F, Cl, Br, I) [6, 7].

Если первые исследователи применяли ЭВМ и методы искусственного интеллекта, то мы удовлетворяли своё желание растить новые монокристаллы, опережая спрос на них. А для получения достоверных результатов в прогнозах старались «не врать», используя многолетний опыт по синтезу и выращиванию их, и закономерности классической кристаллохимии.

За прошедшие 30 лет результаты реальной оправдываемости прогнозов показали, что наш естественный интеллект оказался не хуже искусственного. Сейчас можно найти недостатки в результатах ранних работ. Но стоит ли этим заниматься? Без первых работ не было бы последующих. Анализ рассмотренных систем [8 –13] показывает, что количество известных октаэдрических и тетраэдрических кристаллов можно увеличить, по меньшей мере, в семь раз.

<u>Цель данной работы</u>: кристаллохимический анализ структур в оксидах составов A<sup>+</sup>B<sup>3+</sup>X<sub>2</sub> и оценка возможности синтеза новых соединений.

Какими интересными и полезными физическими свойствами могут обладать кристаллы составов ABX<sub>2</sub>? Об этом есть некоторые сведения.

В PdCoO<sub>2</sub>. (Pd<sup>1+</sup>, Co<sup>3+</sup>) межатомное взаимодействие Pd-Pd обуславливает очень высокую его электропроводность, сопоставимую с проводимостью меди [19].

В PtCoO<sub>2</sub> – такая же электропроводность, как у меди.

Кристаллы ABX<sub>2</sub> со структурой типа α-NaFeO<sub>2</sub> перспективны как полупроводники [14].

Кобальтит лития (Li<sub>x</sub>CoO<sub>2</sub>) может быть эффективным катодным материалом для химических источников тока [15].

В составах ABX<sub>2</sub> известны Гейслеровы сплавы. [14].

Это ферромагнитные сплавы из неферромагнитных элементов. Ферромагнетизм был обнаружен у сплавов в системах: Mn-Cu-Sn; Mn-Cu-Al; Mn-Ag-Al; Mn-Sb; Mn-As; Mn-Bi; Mn-B; Mn-P; Cr-Pt; Cr-S; Cr-Te, и др., в которых содержатся переходные элементы Mn или Cr. Это элементы, ближайшие к Fe [16]. Исследование Гейслеровых сплавов. представляет интерес для выяснения природы ферромагнитного состояния.

Прогноз может выявить новые магнитные материалы, новые полупроводники и сверхпроводники.

#### 2. Анализ структур

В соединениях ABX<sub>2</sub> нас привлекает, в первую очередь, простота составов. Но в этих простых составах насчитывается более 120 структурных типов и более 530 соединений среди оксидов, сульфидов, селенидов, теллуридов, интерметаллов. В меньшем числе представлены галогениды и фосфиды. Желательно бы разобраться в этом обилии структурных типов и найти новые интересные объекты для исследования физических свойств.

В табл. 1 представлены структурные данные для 29 типов структур соединений ABX<sub>2</sub>, которые можно считать основными. Они охватывают 86 % от числа известных представителей. Штриховкой выделены типы, относящиеся к семейству делафоссита или имеющие более 10 представителей.

| <b>X</b> 2 |
|------------|
|            |

|                   |                                                     |                                               | -    |        |
|-------------------|-----------------------------------------------------|-----------------------------------------------|------|--------|
| Обозначения       | Тип структуры                                       | Простр. гр.                                   | Ζ    | Колич. |
| С                 | Кубические                                          |                                               |      |        |
| c1                | CsCl                                                | Pm3m                                          | 1/2  | 8      |
| c2, c3            | NaCl, β-LiFeO <sub>2</sub>                          | Fm3m                                          | 2    | 58     |
| c4                | BiF <sub>3</sub>                                    | P43m                                          | 4    | >50    |
| <b>c</b> 5        | ZnS (сфалерит)                                      | F-43m                                         | 2    | 6      |
| h                 | Гексагональные                                      |                                               |      |        |
| <i>h</i> 1        | δ-AgFeO <sub>2</sub> (BTΦ)                          | P6 <sub>3</sub> /mmc                          | 2    | 5      |
| h2                | β-RbScO <sub>2</sub> (BTΦ)                          | P6 <sub>3</sub> /mmc                          | 2    | 19     |
| rh                | Ромбоэдрические                                     |                                               |      |        |
| R5 <sub>1</sub> ' | CuFeO <sub>2</sub>                                  | R3m                                           | 3    | 30     |
| R5 <sub>1</sub> " | α-NaFeO₂                                            | R3m                                           | 3    | >150   |
| rh3               | β-кварц                                             | <i>P</i> 3 <sub>1</sub> 21                    | 3    | 3      |
| rh4               | AgBiSe <sub>2</sub> ,                               | P3m1                                          | 3    | 8      |
| t                 | Тетрагональные                                      |                                               |      |        |
| <i>t</i> 1        | TISe                                                | I4/mcm                                        | 4    | 12     |
| t2                | α-LiFeO <sub>2</sub>                                | I4 <sub>1</sub> /amd                          | 4    | 19     |
| t3                | CuFeS <sub>2</sub>                                  | I-42d                                         | 4    | 25     |
| <i>t</i> 4        | BaNiS <sub>2</sub>                                  | P4/nmm                                        | 2    | 3      |
| <i>t</i> 5        | ε-LiEuO <sub>2</sub>                                | t                                             | 2    | 6      |
| r                 | Ромбические                                         |                                               |      |        |
| <i>r</i> 1        | KCuO <sub>2</sub>                                   | Стст                                          | 4    | 14     |
| r2                | NaNO <sub>2</sub>                                   | lm2m                                          | 2    | 4      |
| r3                | AgErSe <sub>2</sub>                                 | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> | 4    | 3      |
| <i>r</i> 4        | ThOCl <sub>2</sub> , UOCl <sub>2</sub>              | Pbam                                          | 12   | 3      |
| <i>r</i> 5        | NH <sub>4</sub> HF <sub>2</sub> , AIHO <sub>2</sub> | Pbnm                                          | 8; 4 | 10     |
| <i>r</i> 6        | CslBr <sub>2</sub> и др.                            | Pmnb                                          | 4, 2 | 7      |
| r7                | β-RbMnO <sub>2</sub>                                | Pmnm                                          | 2    | 3      |
| <i>r</i> 8        | $\beta$ -NaFeO <sub>2</sub> , MnSiN <sub>2</sub>    | Pna2 <sub>1</sub>                             | 4    | 15     |
| m                 | Моноклинные                                         |                                               |      |        |
| <i>m</i> 1        | KFeS <sub>2</sub>                                   | C2/c                                          | 4    | 6      |
| <i>m</i> 2        | LiFeO <sub>2</sub>                                  | C2/c                                          | 8    | 4      |
| <i>m</i> 3        | TIFeSe <sub>2</sub>                                 | C2/m                                          | 4    | 5      |
| <i>m</i> 4        | LiFeO <sub>2</sub>                                  | P2 <sub>1</sub> /c                            | 8    | 3      |
| <i>m</i> 5        | δ-LiSmO₂                                            | P2 <sub>1</sub> /c                            | 4    | 10     |
| L                 |                                                     |                                               |      |        |

#### 3. Структуры семейства делафоссита

В составах ABX<sub>2</sub> широко представлено семейство делафосситоподобных структур, рис. 1, *а* и 1, *б* (больше 180 соединений).



Рис. 1, *а*. Структуры CuFeO<sub>2</sub>, CuCrO<sub>2</sub>, CuLaO<sub>2</sub>, NaHF<sub>2</sub> *Это структуры типа делафоссита* CuFeO<sub>2</sub> Координационная формула А<sup>II</sup>B<sup>VI</sup>O<sub>2</sub>.



Рис. 1, б. Структуры α-NaFeO<sub>2</sub>, NaCrS<sub>2</sub>, *Это структуры типа* α-NaFeO<sub>2</sub>. Координационная формула А<sup>VI</sup>B<sup>VI</sup>O<sub>2</sub>.



*а* б Рис. 2. Структуры CuFeO<sub>2</sub> (*a*) и α-NaFeO<sub>2</sub> (б)

Делафоссит – это минерал основного состава CuFeO<sub>2</sub>, названный в честь французского кристаллографа XIX века Ж. Делафоса (Delafosse) [17], имеет ромбоэдрическую структуру с пространственной группой ( $D_{3d}^5 - R$ -3*m*). В элементарной ромбоэдрической ячейке содержится одна формульная единица (*Z* = 1), в гексагональной установке *Z* = 3. Эти структуры принято обозначать символом F5<sub>1</sub>. Но в литературных источниках структурный тип F5<sub>1</sub> именуется разными прототипами: CuFeO<sub>2</sub>,  $\alpha$ -NaFeO<sub>2</sub>, NaHF<sub>2</sub>, NaCrS<sub>2</sub>, CuCrO<sub>2</sub>, CuLaO<sub>2</sub> [18 – 21]. Визуальное представление ромбоэдрических фаз этих соединений выявило различия в строении структур. Все шесть структур, представленные на рис. 1, следовательно, всё семейство делафосситоподобных фаз, можно по строению подразделить на две группы:

1) структуры типов CuFeO<sub>2</sub>, HNaF<sub>2</sub>, CuCrO<sub>2</sub>, CuLaO<sub>2</sub> и 2) структуры типов  $\alpha$ -NaFeO<sub>2</sub>, NaCrS<sub>2</sub>.

Таблица 2.

| -                  |         |     |               |       |      |                      |     |     |       |  |  |
|--------------------|---------|-----|---------------|-------|------|----------------------|-----|-----|-------|--|--|
| CuFeO <sub>2</sub> |         |     | (R-3m, Z = 3) |       |      | α-NaFeO <sub>2</sub> |     |     |       |  |  |
| Атом               | Позиция | x/a | y/b           | z/c   | Атом | Позиция              | x/a | y/b | z/c   |  |  |
|                    |         | 0   | 0             | 0     |      |                      | 0   | 0   | 0     |  |  |
| Cu                 | 3a      | 1/3 | 2/3           | 2/3   | Na   | 3a                   | 1/3 | 2/3 | 2/3   |  |  |
|                    |         | 2/3 | 1/3           | 1/3   |      |                      | 2/3 | 1/3 | 1/3   |  |  |
|                    |         | 0   | 0             | 1/2   |      |                      | 0   | 0   | 1/2   |  |  |
| Fe                 | 3b      | 1/3 | 2/3           | 2/3   | Fe   | 3b                   | 1/3 | 2/3 | 2/3   |  |  |
|                    |         | 2/3 | 1/3           | 1/3   |      |                      | 2/3 | 1/3 | 1/3   |  |  |
|                    |         | 0   | Fe            | 0,107 |      |                      | 0   | 0   | 0,231 |  |  |
|                    |         | 0   | 0             | 0,893 |      |                      | 0   | 0   | 0,769 |  |  |
| 0                  | 6c      | 1/3 | 2/3           | 0,774 | 0    | 6c                   | 1/3 | 2/3 | 0,898 |  |  |
|                    |         | 1/3 | 2/3           | 0,560 |      |                      | 1/3 | 2/3 | 0,436 |  |  |
|                    |         | 2/3 | 1/3           | 0,440 |      |                      | 2/3 | 1/3 | 0,564 |  |  |
|                    |         | 2/3 | 1/3           | 0,226 |      |                      | 2/3 | 1/3 | 0,102 |  |  |

Положения атомов в структурах семейства делафоссита [21]

Наглядней разница в расположении атомов в этих двух разновидностях структур заметна на рис. 2. Все они принадлежат к ромбоэдрической пространственной группе *R*-3*m*, соответствующие атомы занимают однотипные точки этой пространственной группы. Катионные подрешётки у них одинаковы. Вещества относятся к одному и тому же структурному типу только тогда, когда атомы располагаются в точках одних и тех же правильных систем одной и той же пространственной группы и, кроме того, атомы, занимающие точки каждой данной правильной системы, имеют одинаковую координацию. Такие вещества следует считать изотипными [22].

Структуры, представленные на рис. 2, различаются координацией атомов при равных пространственных группах и системах точек для соответствующих атомов. *Такие структуры называют одноточечными* [22]. Поэтому структуры типа делафоссита CuFeO<sub>2</sub> и типа α-NaFeO<sub>2</sub> можно считать прототипами в семействе F5<sub>1</sub>.

Таблица 3.

Структуры типа F5<sub>1</sub> (*R*-3*m*, *Z* = 3),

| Соединение              | <i>a,</i> Å | <i>c,</i> Å | c/a   | R <sub>A</sub> | R <sub>B</sub> | $R_A/R_B$ | <i>z/c</i> (O) | Литерат. |
|-------------------------|-------------|-------------|-------|----------------|----------------|-----------|----------------|----------|
| AgFeO₂- <u>α</u>        | 3,039       | 18,59       | 6,117 | 0,67           | 0,645          | 1,039     | 0,1112         | [23]     |
| CuAlO <sub>2</sub>      | 2,858       | 16,958      | 5,934 | 0,46           | 0,535          | 0,860     | 0,1099         | [24]     |
| CuCrO <sub>2</sub>      | 2,975       | 17,096      | 5,747 | 0,46           | 0,615          | 0,748     | 0,108          | [21]     |
| CuFeO <sub>2</sub>      | 3,0351      | 17,166      | 5,656 | 0,46           | 0,645          | 0,713     | 0,1066         | [23]     |
| CuGaO <sub>2</sub>      | 2,977       | 17,171      | 5,768 | 0,46           | 0,62           | 0,742     | 0,1076         | [24]     |
| CuLaO <sub>2</sub>      | 3,83        | 17,1        | 4,465 | 0,46           | 1,032          | 0,446     | 0,108          | [21]     |
| CuYO <sub>2</sub>       | 3,533       | 17,136      | 4,850 | 0,46           | 0,9            | 0,511     | 0,1066         | [24]     |
| HNaF <sub>2</sub>       | 3,476       | 13,76       | 3,959 | -0,18          | 1,02           | ?         | 0,082          | [21]     |
| PdCoO <sub>2</sub>      | 2,83        | 17,743      | 6,270 | 0,59           | 0,61           | 0,967     | 0,112          | [23]     |
| PtCoO <sub>2</sub>      | 2,83        | 17,837      | 6,303 | 0,61           | 0,61           | 1,000     | 0,114          | [23]     |
| KCrO <sub>2</sub>       | 3,044       | 17,8922     | 5,877 | 1,38           | 0,615          | 2,244     | 0,2241         | [25]     |
| KPrO2                   | 3,651       | 18,5965     | 5,093 | 1,38           | 0,99           | 1,394     | 0,2303         | [27]     |
| KYO <sub>2</sub>        | 3,47        | 18,6        | 5,360 | 1,38           | 0,9            | 1,533     | 0,24           | [26]     |
| LiCoO <sub>2</sub>      | 2,84        | 14,18       | 4,993 | 0,76           | 0,61           | 1,246     | 0,260          | [28]     |
| LiCoO <sub>2</sub>      | 2,8155      | 14,0537     | 4,992 | 0,76           | 0,61           | 1,246     | 0,2391         | [29]     |
| LiFeO <sub>2</sub>      | 2,963       | 14,636      | 4,940 | 0,76           | 0,645          | 1,178     | 0,245          | [21]     |
| LiNiO <sub>2</sub>      | 2,875       | 14,18       | 4,932 | 0,76           | 0,6            | 1,267     | 0,258          | [30]     |
| NaCrO <sub>2</sub>      | 2,9747      | 15,954      | 5,363 | 1,02           | 0,615          | 1,659     | 0,2395         | [25]     |
| NaFeO₂-α                | 3,022       | 16,082      | 5,322 | 1,02           | 0,645          | 1,581     | 0,231          | [21]     |
| NaRhO <sub>2</sub>      | 3,097       | 15,528      | 5,014 | 1,02           | 0,665          | 1,534     | 0,234          | [31]     |
| NaTiO <sub>2</sub> 1,4K | 3,001       | 16,44       | 5,478 | 1,02           | 0,67           | 1,522     | 0,265          | [30]     |
| RbNdO <sub>2</sub>      | 3,638       | 19,58       | 5,382 | 1,52           | 0,983          | 1,546     | 0,22           | [35]     |
| RbYO <sub>2</sub>       | 3,48        | 19,5        | 5,603 | 1,52           | 0,9            | 1,689     | 0,23           | [26]     |

для которых известны координаты атомов.

#### Таблица 4.

Структуры оксидов  $A^+B^{3+}O_2$  типа делафоссита (*R*-3*m*, *Z* = 3).

| Представи-<br>тель    | Примечания                 | Литера-<br>тура | R <sub>A</sub><br>(Å) | R <sub>в</sub><br>(Å) | R <sub>A</sub> /R <sub>B</sub> | <i>a</i> , Å | <i>c</i> , Å | c/a  |
|-----------------------|----------------------------|-----------------|-----------------------|-----------------------|--------------------------------|--------------|--------------|------|
| AgCoO <sub>2</sub>    |                            | [19, 20]        | 0,67                  | 0,61                  | 1,10                           | 2,859        | 18,26        | 6,39 |
| AgCrO <sub>2</sub>    |                            | [20]            | 0,67                  | 0,615                 | 1,09                           | 2,98         | 18,5         | 6,21 |
| AgErO <sub>2</sub>    | t <sub>разл.</sub> = 483°С | [16]            | 0,67                  | 0,89                  | 0,75                           | 3,735        | 17,2         | 4,61 |
| AgFeO <sub>2</sub> -α |                            | [20]            | 0,67                  | 0,78                  | 0,86                           | 3,036        | 18,59        | 6,14 |
| AgInO <sub>2</sub>    |                            | [20,32]         | 0,67                  | 0,8                   | 0,84                           | 3,277        | 18,87        | 5,76 |
| AgLuO <sub>2</sub>    | t <sub>разл.</sub> = 755°С | [19]            | 0,67                  | 0,861                 | 0,78                           | 3,666        | 16,95        | 4,62 |
| AgNiO <sub>2</sub>    |                            | [20]            | 0,67                  | 0,6                   | 1,12                           | 2,936        | 18,35        | 6,25 |
| AgTIO <sub>2</sub>    |                            | [19]            | 0,67                  | 0,885                 | 0,76                           | 3,568        | 18,818       | 5,27 |
| AgTmO <sub>2</sub>    | t <sub>разл.</sub> = 546°С | [19]            | 0,67                  | 0,88                  | 0,76                           | 3,69         | 17,05        | 4,62 |
| AgYbO <sub>2</sub>    | t <sub>разл.</sub> = 604°С | [19]            | 0,67                  | 0,868                 | 0,77                           | 3,681        | 17           | 4,62 |
| CuAlO <sub>2</sub>    |                            | [24]            | 0,46                  | 0,535                 | 0,86                           | 2,858        | 16,958       | 5,93 |
| CuAlO <sub>2</sub>    |                            | [20]            | 0,46                  | 0,535                 | 0,86                           | 2,856        | 16,94        | 5,93 |
| CuCoO <sub>2</sub>    |                            | [19]            | 0,46                  | 0,61                  | 0,75                           | 2,85         | 17,16        | 6,02 |
| CuCoO <sub>2</sub>    | ФВД*                       | [19]            | 0,46                  | 0,61                  | 0,75                           | 2,849        | 16,92        | 5,94 |
| CuCrO <sub>2</sub>    |                            | [20]            | 0,46                  | 0,8                   | 0,58                           | 2,976        | 17,1         | 5,75 |
| CuLaO <sub>2</sub>    |                            | [19]            | 0,46                  | 1,032                 | 0,45                           | 3,83         | 17,10        | 4,47 |
| CuPrO <sub>2</sub>    |                            | [19]            | 0,46                  | 0,99                  | 0,46                           | 3,75         | 17,09        | 4,56 |
| CuNdO <sub>2</sub>    |                            | [19]            | 0,46                  | 0,983                 | 0,47                           | 3,71         | 17,10        | 4,60 |
| CuSmO <sub>2</sub>    |                            | [19]            | 0,46                  | 0,958                 | 0,48                           | 3,66         | 17,08        | 4,67 |
| CuEuO <sub>2</sub>    |                            | [19]            | 0,46                  | 0,947                 | 0,49                           | 3,63         | 17,07        | 4,70 |
| CuFeO <sub>2</sub>    |                            | [20]            | 0,46                  | 0,78                  | 0,59                           | 3,034        | 17,16        | 5,66 |
| CuGaO <sub>2</sub>    |                            | [24]            | 0,46                  | 0,62                  | 0,74                           | 2,977        | 17,171       | 5,77 |
| CuLaO <sub>2</sub>    |                            | [21]            | 0,46                  | 1,03                  | 0,45                           | 3,83         | 17,1         | 4,46 |
| CuRhO <sub>2</sub>    | ФВД*                       | [19]            | 0,46                  | 0,665                 | 0,69                           | 3,074        | 17,094       | 5,56 |
| CuYO <sub>2</sub>     |                            | [24]            | 0,46                  | 0,9                   | 0,51                           | 3,533        | 17,136       | 4,85 |
| PdCoO <sub>2</sub>    |                            | [19]            | 0,59                  | 0,61                  | 0,97                           | 2,93         | 17,743       | 6,06 |
| PdCoO <sub>2</sub>    |                            | [20]            | 0,59                  | 0,61                  | 0,97                           | 2,83         | 17,74        | 6,27 |
| PdRhO <sub>2</sub>    |                            | [19]            | 0,59                  | 0,66                  | 0,89                           | 3,021        | 18,083       | 5,99 |
| PtCoO <sub>2</sub>    |                            | [19]            | 0,59                  | 0,61                  | 0,97                           | 2,83         | 17,837       | 6,30 |

\*ФВД – синтез соединения произведён под высоким давлением.

t<sub>разл.</sub> – температура разложения.

Таблица 5.

Структуры оксидов  $A^+B^{3+}O_2$  типа  $\alpha$ -NaFeO<sub>2</sub>, (*R*-3*m*, *Z* = 3).

| Представи-<br>тель | Примеча-<br>ния | Литера-<br>тура | R <sub>A</sub><br>(Å) | R <sub>B</sub><br>(Å) | $R_A/R_B$ | <i>a</i> , Å | <i>c</i> , Å | c/a  |
|--------------------|-----------------|-----------------|-----------------------|-----------------------|-----------|--------------|--------------|------|
| CsDyO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,912                 | 1,83      | 3,544        | 20,48        | 5,78 |
| CsErO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,89                  | 1,88      | 3,509        | 20,45        | 5,83 |
| CsEuO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,947                 | 1,76      | 3,607        | 20,48        | 5,68 |
| CsGdO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,938                 | 1,78      | 3,587        | 20,56        | 5,73 |
| CsHoO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,901                 | 1,85      | 3,528        | 20,47        | 5,80 |
| CsLaO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 1,03                  | 1,62      | 3,765        | 20,67        | 5,49 |
| CsLuO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,861                 | 1,94      | 3,465        | 20,41        | 5,89 |
| CsNdO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,983                 | 1,70      | 3,668        | 20,6         | 5,62 |
| CsPrO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,99                  | 1,69      | 3,694        | 20,62        | 5,58 |
| CsSmO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,958                 | 1,74      | 3,628        | 20,5         | 5,65 |
| CsTbO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,923                 | 1,81      | 3,566        | 20,45        | 5,73 |
| CsTIO <sub>2</sub> | [6165]          | [19]            | 1,67                  | 0,885                 | 1,89      | 3,39         | 20,8         | 6,14 |
| CsTmO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,88                  | 1,90      | 3,497        | 20,38        | 5,83 |
| CsYbO <sub>2</sub> | ΗΤΦ             | [19]            | 1,67                  | 0,868                 | 1,92      | 3,481        | 20,37        | 5,85 |
| CsYO <sub>2</sub>  | ΗΤΦ             | [19, 20]        | 1,67                  | 0,9                   | 1,86      | 3,524        | 20,48        | 5,81 |
| KCeO <sub>2</sub>  |                 | [19, 33]        | 1,38                  | 1,01                  | 1,37      | 3,66         | 18,66        | 5,10 |
| KCrO <sub>2</sub>  |                 | [25]            | 1,38                  | 0,615                 | 2,24      | 3,044        | 17,892       | 5,88 |
| KDyO <sub>2</sub>  |                 | [19, 33]        | 1,38                  | 0,912                 | 1,51      | 3,47         | 18,57        | 5,35 |
| KErO <sub>2</sub>  |                 | [19]            | 1,38                  | 0,89                  | 1,55      | 3,43         | 18,58        | 5,42 |
| KEuO <sub>2</sub>  |                 | [19]            | 1,38                  | 0,95                  | 1,45      | 3,53         | 18,58        | 5,26 |
| KGdO <sub>2</sub>  |                 | [19]            | 1,38                  | 0,94                  | 1,47      | 3,51         | 18,62        | 5,30 |
| KLaO₂-α            | [5725]          | [19, 33]        | 1,38                  | 1,03                  | 1,34      | 3,7          | 18,71        | 5,06 |
| KNdO <sub>2</sub>  |                 | [19, 33]        | 1,38                  | 0,98                  | 1,41      | 3,59         | 18,65        | 5,19 |
| KPbO <sub>2</sub>  | ВТФ>640°С       | [20]            | 1,38                  | 1                     | 1,38      | 3,358        | 18,56        | 5,53 |
| KPrO <sub>2</sub>  |                 | [20]            | 1,38                  | 0,99                  | 1,39      | 3,651        | 18,59        | 5,09 |
| KScO₂-α            |                 | [34]            | 1,38                  | 0,745                 | 1,85      | 3,219        | 18,354       | 5,70 |
| KSmO <sub>2</sub>  |                 | [33]            | 1,38                  | 0,96                  | 1,44      | 3,55         | 18,58        | 5,23 |
| KTbO <sub>2</sub>  |                 | [19]            | 1,38                  | 0,92                  | 1,50      | 3,49         | 18,61        | 5,33 |
| KTIO <sub>2</sub>  |                 | [18, 19]        | 1,38                  | 0,88                  | 1,57      | 3,43         | 18,3         | 5,34 |
| KYbO <sub>2</sub>  |                 | [19]            | 1,38                  | 0,87                  | 1,59      | 3,39         | 18,49        | 5,45 |
| KYO <sub>2</sub>   |                 | [26]            | 1,38                  | 0,9                   | 1,53      | 3,47         | 18,6         | 5,36 |

| Представи-                    | Примеча-   | Питера-    | R.   | Ra    | D (D      | 8            | 8      |      |
|-------------------------------|------------|------------|------|-------|-----------|--------------|--------|------|
| тель                          | ния        | тура       | (Å)  | (Å)   | $R_A/R_B$ | <i>a</i> , A | с, А   | c/a  |
| LiAlO <sub>2</sub> -α         |            | [18, 20]   | 0,76 | 0,535 | 1,42      | 2,799        | 14,18  | 5,07 |
| LiCoO <sub>2</sub>            | ΒΤΦ        | [33]       | 0,76 | 0,61  | 1,25      | 2,817        | 14,052 | 4,99 |
| LiCrO <sub>2</sub>            |            | [20, 33]   | 0,76 | 0,615 | 1,24      | 2,899        | 14,41  | 4,97 |
| LiFeO <sub>2</sub> -α         | ΗΤΦ        | [20]       | 0,76 | 0,645 | 1,18      | 3,025        | 16,09  | 5,32 |
| LiGaO <sub>2</sub>            | ФВД        | [33]       | 0,76 | 0,62  | 1,23      | 2,92         | 14,45  | 4,95 |
| LiNiO <sub>2</sub>            | комн. т-ра | [30]       | 0,76 | 0,6   | 1,27      | 2,875        | 14,18  | 4,93 |
| LiNiO <sub>2</sub>            |            | [33]       | 0,76 | 0,6   | 1,27      | 2,88         | 14,2   | 4,93 |
| LiNiO <sub>2</sub>            |            | [18–20]    | 0,76 | 0,6   | 1,27      | 2,878        | 14,19  | 4,93 |
| LiRhO <sub>2</sub>            |            | [20]       | 0,76 | 0,66  | 1,15      | 3,026        | 14,21  | 4,70 |
| LiVO <sub>2</sub>             |            | [33]       | 0,76 | 0,64  | 1,19      | 2,838        | 14,8   | 5,21 |
| NaCoO <sub>2</sub>            |            | [19]       | 1,02 | 0,61  | 1,67      | 2,88         | 15,6   | 5,42 |
| NaCrO <sub>2</sub>            |            | [25]       | 1,02 | 0,615 | 1,66      | 2,975        | 15,954 | 5,36 |
| NaErO <sub>2</sub>            | ΒΤΦ        | [19]       | 1,02 | 0,89  | 1,15      | 3,42         | 16,62  | 4,86 |
| NaFeO <sub>2</sub> -α         |            | [20]       | 1,02 | 0,645 | 1,58      | 3,025        | 16,09  | 5,32 |
| NaHoO <sub>2</sub>            | ΒΤΦ        | [19, 33]   | 1,02 | 0,9   | 1,13      | 3,39         | 16,6   | 4,90 |
| NalnO <sub>2</sub>            |            | [20, 33]   | 1,02 | 0,8   | 1,28      | 3,238        | 16,398 | 5,06 |
| NaLuO <sub>2</sub>            |            | [33]       | 1,02 | 0,861 | 1,18      | 3,32         | 16,52  | 4,98 |
| NaLuO <sub>2</sub>            |            | [19]       | 1,02 | 0,861 | 1,18      | 3,34         | 16,48  | 4,93 |
| NaNiO <sub>2</sub>            | ВТФ>220°С  | [19, 20]   | 1,02 | 0,6   | 1,70      | 2,96         | 15,77  | 5,33 |
| NaRhO <sub>2</sub>            |            | [20]       | 1,02 | 0,66  | 1,55      | 3,097        | 15,52  | 5,01 |
| NaScO <sub>2</sub>            |            | [19,20,33] | 1,02 | 0,745 | 1,37      | 3,166        | 16,27  | 5,14 |
| NaTiO <sub>2</sub>            |            | [18, 20]   | 1,02 | 0,67  | 1,52      | 3,02         | 16,2   | 5,36 |
| NaTiO <sub>2</sub>            | 1,4 K      | [30]       | 1,02 | 0,67  | 1,52      | 3,001        | 16,44  | 5,48 |
| NaTlO <sub>2</sub>            | ВТФ >500°С | [19, 33]   | 1,02 | 0,88  | 1,16      | 3,35         | 16,51  | 4,93 |
| NaTmO <sub>2</sub>            | ΒΤΦ        | [20]       | 1,02 | 0,88  | 1,16      | 3,37         | 16,52  | 4,90 |
| NaVO <sub>2</sub>             |            | [18]       | 1,02 | 0,64  | 1,59      | 2,87         | 17     | 5,92 |
| NaYbO <sub>2</sub>            | ΒΤΦ        | [19]       | 1,02 | 0,87  | 1,17      | 3,37         | 16,47  | 4,89 |
| NaYO <sub>2</sub>             | ΒΤΦ        | [19, 33]   | 1,02 | 0,87  | 1,17      | 3,38         | 16,43  | 4,86 |
| RbEuO <sub>2</sub>            |            | [20, 35]   | 1,52 | 0,95  | 1,60      | 3,572        | 19,53  | 5,47 |
| RbGdO <sub>2</sub>            |            | [20, 35]   | 1,52 | 0,94  | 1,62      | 3,548        | 19,58  | 5,52 |
| RbLaO <sub>2</sub>            |            | [20, 35]   | 1,52 | 1,03  | 1,48      | 3,739        | 19,58  | 5,24 |
| RbNdO <sub>2</sub>            | ]          | [20, 35]   | 1,52 | 0,98  | 1,55      | 3,638        | 19,58  | 5,38 |
| RbScO <sub>2</sub> - $\alpha$ |            | [34]       | 1,52 | 0,745 | 2,04      | 3,251        | 19,209 | 5,91 |
|                               |            |            |      |       |           |              |        |      |

| Представи-<br>тель | Примеча-<br>ния | Литера-<br>тура | R <sub>A</sub><br>(Å) | R <sub>B</sub><br>(Å) | R <sub>A</sub> /R <sub>B</sub> | <i>a</i> , Å | <i>c</i> , Å | c/a  |
|--------------------|-----------------|-----------------|-----------------------|-----------------------|--------------------------------|--------------|--------------|------|
| RbSmO <sub>2</sub> |                 | [20, 36]        | 1,52                  | 0,96                  | 1,58                           | 3,595        | 19,55        | 5,44 |
| RbTIO <sub>2</sub> |                 | [18–20]         | 1,52                  | 0,88                  | 1,73                           | 3,458        | 19,14        | 5,53 |
| RbYO <sub>2</sub>  |                 | [26]            | 1,52                  | 0,9                   | 1,69                           | 3,483        | 19,49        | 5,60 |

4. Фазовые переходы.

В кристаллах рассматриваемого семейства известны структурные фазовые переходы.

В NaFeO<sub>2</sub> модификация α- (альфа) является низкотемпературной фазой. В высокотемпературной фазе (β-фаза) NaFeO<sub>2</sub> координация катионов тетраэдрическая. Тетраэдры соединены вершинами. Такие фазы известны у LiGaO<sub>2</sub> [37] и AgAlO<sub>2</sub> [38].





Рис. 3. Структура β-NaFeO<sub>2</sub>.

При понижении температуры и фазовом переходе (β → α) в NaFeO<sub>2</sub> происходит смена координации с тетраэдрической (ВТФ) на октаэдрическую (НТФ). На такие переходы способны кристаллы, в которых трёхвалентные катионы имеют относительно малые размеры.

Если трёхвалентный катион крупный (( $R_A/R_B$ ) > 1,62), например редкоземельный, то высокотемпературная фаза может быть гексагональной типа  $\beta$ -RbScO<sub>2</sub>. Низкотемпературная модификация в RbScO<sub>2</sub> ромбоэдрическая типа  $\alpha$ -NaFeO<sub>2</sub>. В структуре  $\beta$ -RbScO<sub>2</sub> (рис. 4) KЧ<sub>Rb</sub> = 6 – тригональная призма, KЧ<sub>Sc</sub> = 6 – октаэдр. При ( $R_A/R_B$ ) = 1,13 – 1,17 структура  $\alpha$ -NaFeO<sub>2</sub> является высокотемпературной фазой. А низкотемпературной фазой – кубический тип NaCl со статистическим расположением катионов.



Рис. 4. Структуры  $\beta$ -RbScO<sub>2</sub> и  $\delta$ -AgFeO<sub>2</sub>.

В LiTIO<sub>2</sub> ((R<sub>A</sub>/R<sub>B</sub>) = 0,86) кубическая структура типа NaCl является высокотемпературной фазой выше 640°C. При (640–570)°C структура тетрагональная (*I*4<sub>1</sub>/*amd*), при (570–480)°C – ромбоэдрическая [19]. Непонятно только какая она ниже 480°C?

Таблица 6.

| Представитель      | Литература | R <sub>A</sub><br>(Å) | R <sub>B</sub><br>(Å) | R <sub>A</sub> /R <sub>B</sub> | <i>a</i> , Å | <i>b</i> , Å | c, Å  |
|--------------------|------------|-----------------------|-----------------------|--------------------------------|--------------|--------------|-------|
| NaFeO₂-β           | [21]       | 0,99                  | 0,49                  | 2,02                           | 5,672        | 7,136        | 5,377 |
| AgAlO₂-β           | [38]       | 1,00                  | 0,39                  | 2,56                           | 5,431        | 6,980        | 5,375 |
| LiGaO <sub>2</sub> | [37]       | 0,59                  | 0,47                  | 1,25                           | 5,402        | 6,372        | 5,007 |
| NaAlO <sub>2</sub> | [20]       | 0,99                  | 0,39                  | 2,54                           | 5,386        | 7,033        | 5,218 |

Структуры типа  $\beta$ -NaFeO<sub>2</sub> (*Pna*2<sub>1</sub>, *Z* = 4)

#### Таблица 7.

| Соединение         | Фаза | Тип                          | Пространственная группа       | T, K    |
|--------------------|------|------------------------------|-------------------------------|---------|
| NaFeO <sub>2</sub> | ВΤΦ  | β-NaFeO <sub>2</sub>         | <i>Pna</i> 2 <sub>1</sub> (4) |         |
|                    | ΗΤΦ  | $\alpha$ -NaFeO <sub>2</sub> | R-3m (3)                      |         |
| CsLaO <sub>2</sub> | ВΤΦ  | β-RbScO <sub>2</sub>         | P6 <sub>3</sub> /mmc (2)      |         |
|                    | ΗΤΦ  | $\alpha$ -NaFeO <sub>2</sub> | R-3m (3)                      |         |
| CsDyO <sub>2</sub> | ВΤΦ  | $\alpha$ -NaFeO <sub>2</sub> | R-3m (3)                      | >600    |
|                    | ΗΤΦ  | NaCl                         | Fm3m (2)                      | <600    |
| LiTIO <sub>2</sub> | ВΤΦ  | NaCl                         | Fm3m (2)                      | >913    |
|                    | СрТФ | t.                           | l4 <sub>1</sub> /amd          | 913–843 |
|                    | ΗΤΦ  | rh                           | ?                             | 843–753 |
| NaNdO <sub>2</sub> | ВΤΦ  | t.                           | l4₁/amd                       |         |
|                    | ΗΤΦ  | NaCl                         | Fm3m (2)                      |         |
| AgFeO <sub>2</sub> | ВΤΦ  | h.                           | δ-AgFeO <sub>2</sub>          |         |
|                    | ΗΤΦ  | CuFeO <sub>2</sub>           | R-3m (3)                      |         |

Варианты структурных фазовых переходов в оксидах А<sup>+</sup>В<sup>3+</sup>О<sub>2</sub>

Схема фазовых переходов между основными структурными семействами в составах  $ABX_2$  представлена на рис. 5. Большинство структурных фазовых переходов присуще прафазам типа  $\alpha$ -NaFeO<sub>2</sub>. В соединениях типа делафоссита (CuFeO<sub>2</sub>) примеров низкотемпературных фаз нам обнаружить не удалось, а при повышении температуры они могут стать гексагональными типа  $\delta$ -AgFeO<sub>2</sub> (рис. 4).

В составах ABX<sub>2</sub> с крупными катионами, имеющими структуры типа NaCl со статистическим распределением их, выше 300 – 400°C происходят фазовые переходы в структурный тип α-NaFeO<sub>2</sub> с понижением симметрии, но с упорядочением атомов [19].



Рис. 5. Основные структурные семейства ABX<sub>2</sub> и фазовые переходы между ними.

### 5. Структуры типов NaCl и BiF<sub>3</sub>

В соединениях ABX<sub>2</sub> реализуются структурные типы из составов AX и AX<sub>3</sub>. Это можно объяснить следующим:

Если атомы A и B в решётке соизмеримы и будут разупорядочены, то формула ABX<sub>2</sub> примет вид 2AX, и может реализоваться структурный тип из составов AX. Среди соединений ABX<sub>2</sub> известны кубические структуры типов CsCl, NaCl, NaTl, ZnS (сфалерит) и аналоги этих структур.

В [18] сказано, что тип F5<sub>1</sub> можно считать деформированной решёткой каменной соли (тип B1), в которой простой анион заменён на тройной, например,  $HF_2^-$ ,  $ICI_2^-$ , и пр. Тип F5<sub>2</sub> (KHF<sub>2</sub>) можно классифицировать как деформированную подобным образом решётку B2 (CsCl). На рис. 6 представлена структура NaCl в трёх вариантах.



Рис. 6. Структура типа NaCl. (а) пространственная проекция, (б) вид на элементарную ячейку вдоль пространственной диагонали, (в) – в виде гексагональной ячейки.

На рис. 6 гексагональный вариант структуры NaCl принципиально не отличается, например, от гексагональной структуры типа  $\beta$ -RbScO<sub>2</sub>. Эти две структуры напоминают вариант политипичных кристаллических решёток. В составах ABX<sub>2</sub> есть порядка десяти структур, которые считаются родственными типу NaCl [19, 20]. Так, что в родственность структур семейств делафоссита и каменной соли можно поверить. Родственность этих структур подтверждается во многих соединениях фазовыми переходам в тип  $\alpha$ -NaFeO<sub>2</sub>. Структуры типа халькопирита (CuFeS<sub>2</sub>, *I*42*d*, *Z* = 4) и типа станнина (Cu<sub>2</sub>FeSnS<sub>4</sub>, *I*-42*m*, *Z* = 2) [20] тоже можно считать родственными типу каменной соли, т.к. они имеют подобные катионные подрешётки, но эти системы составов нужно рассмотреть особо.



Структуры: NaCl (*a*), катионная подрешётка NaCl (*б*), сфалерита ZnS (*в*), халькопирита CuFeS<sub>2</sub>(*г*), станнина Cu<sub>2</sub>FeSnS<sub>4</sub> ( $\partial$ ).

Рис. 7. Структуры родственные NaCl.

Структурный тип – понятие геометрическое. Если в составах ABX<sub>2</sub> реализуется структурный тип NaCl (*Fm3m*, *Z* = 2), то это значит, что атомы A и B в кристаллической решётке расположены статистически в однотипных позициях. Следовательно при изменении термодинамических условий в таких структурах может произойти фазовый переход с упорядочением катионов (атомов). Эта неизбежность касается всех соединений, содержащих несколько сортов катионов статистически расположенных в одинаковых позициях.

В большинстве соединений ABX<sub>2</sub> фаза типа NaCl является низкотемпературной. В высокотемпературных фазах происходит упорядочение катионов, структура немного искажается. но сохраняется визуальное сходство с решёткой типа NaCl. При упорядочении катионов в решётке ABX<sub>2</sub> реализуются структурные типы:  $\alpha$ -NaFeO<sub>2</sub> (*R*3*m*),  $\alpha$ -LiFeO<sub>2</sub> (*I*4<sub>1</sub>/*amd*), LiMnO<sub>2</sub> (ромбич.) [33] и др.

Структура типа NaCl – это уникальная структура. Она может быть основана на плотном кубическом каркасе из анионов, может быть основана на каркасе из катионов. Может существовать, и устойчиво, без плотного каркаса, когда катион и анион равновелики. Структурные фрагменты могут быть подвижными, как в структуре типа KClO<sub>4</sub> [9]. Решётка может быть ионной и может быть не ионной, как в интерметаллических соединениях. Может быть реализована в составах более сложных, чем AX.

Таблица 8.

| Представитель         | ΗΤΦ  | a, Å  | Примечания  | ΒΤΦ                          | a, Å | Литература   |
|-----------------------|------|-------|-------------|------------------------------|------|--------------|
| LiFeO <sub>2</sub>    | NaCl | 4,141 | Одна из фаз | $\alpha$ -NaFeO <sub>2</sub> |      | [20, 33]     |
| LiTiO <sub>2</sub>    | NaCl | 4,140 | Одна из фаз |                              |      | [20, 33]     |
| LiTIO <sub>2</sub> -γ | r    |       | >640°C      | NaCl                         | 4,57 | [19]         |
| NaDyO <sub>2</sub>    | NaCl | 4,800 | Одна из фаз |                              |      | [19, 20, 33] |
| NaErO <sub>2</sub>    | NaCl | 4,76  |             | $\alpha$ -NaFeO <sub>2</sub> |      | [19, 20]     |
| NaEuO <sub>2</sub>    | NaCl | 4,86  |             | LiFeO₂-α                     |      | [19]         |
| NaGdO <sub>2</sub>    | NaCl | 4,82  | <650°C      | LiFeO₂-α                     |      | [19]         |
| NaHoO <sub>2</sub>    | NaCl | 4,767 |             | $\alpha$ -NaFeO <sub>2</sub> |      | [19]         |
| NaInO <sub>2</sub>    | NaCl | 4,62  |             |                              |      | [20, 33]     |
| NaLuO <sub>2</sub>    | NaCl | 4,715 |             |                              |      | [19, 20, 33] |
| NaNdO <sub>2</sub>    | NaCl | 4,93  |             | LiFeO₂-α                     |      | [19]         |

#### Соединения А<sup>+</sup>В<sup>3+</sup>О<sub>2</sub> со структурой типа NaCl

| Представитель      | ΗΤΦ  | a, Å  | Примечания | ΒΤΦ                          | a, Å | Литература   |
|--------------------|------|-------|------------|------------------------------|------|--------------|
| NaScO <sub>2</sub> | NaCl | 4,525 |            | $\alpha$ -NaFeO <sub>2</sub> |      | [16, 20, 33] |
| NaSmO <sub>2</sub> | NaCl | 4,89  | <590°C     | LiFeO₂-α                     |      | [19]         |
| NaTIO <sub>2</sub> | NaCl | 4,738 |            | $\alpha$ -NaFeO <sub>2</sub> |      | [20]         |
| NaTIO <sub>2</sub> | NaCl | 4,76  | <500°C     | $\alpha$ -NaFeO <sub>2</sub> |      | [19]         |
| NaTmO₂             | NaCl | 4,743 |            | $\alpha$ -NaFeO <sub>2</sub> |      | [19, 20, 33] |
| NaYbO <sub>2</sub> | NaCl | 4,730 |            | $\alpha$ -NaFeO <sub>2</sub> |      | [19, 20, 33] |
| NaYO <sub>2</sub>  | NaCl | 4,791 |            | $\alpha$ -NaFeO <sub>2</sub> |      | [19]         |
| NsTbO <sub>2</sub> | NaCl | 4,819 |            | LiFeO₂-α                     |      | [19]         |

Если будут разупорядочены атомы В и X или A и X, то химическая формула  $ABX_2$  примет вид  $BX_3$ , структурные типы могут реализоваться из составов  $BX_3$ . Эти составы можно представить в виде  $AX_2X'$  или  $AXX'_2$ .

Примером реализации такого варианта являются кристаллы трёхфтористого висмута, которые имеют кубическую структуру и кристаллизуются в структурном типе DO<sub>3</sub> (*Fm*3*m*, *Z* = 4), подобном решётке флюорита [18]. Все атомы в кристаллической решётке занимают частные положения: Bi – 4*a*, F<sub>1</sub> – 4*b*, F<sub>2</sub> – 8*c*, *a* = 5,865 Å [39]. Структуру BiF<sub>3</sub> можно представить как ячейку CaF<sub>2</sub>, если в ней разместить четыре добавочных фтора в центрах рёбер и в середине куба. Таким образом, ионы Bi<sup>3+</sup> окружены 8 ионами фтора на расстоянии 2,54 Å и шестью другими более удалёнными ионами фтора на расстоянии 2,93 Å. Восемь ближайших ионов фтора образуют вокруг Bi<sup>3+</sup> куб, а шесть более отдалённых – октаэдр [18]. Структуру типа BiF<sub>3</sub> можно считать и родственной типу NaCl, т.к. обе структуры имеют подобные катионные подрешётки.

ВіF<sub>3</sub> считается ионной структурой. В кристаллической решётке у анионов разное окружение. Поэтому эта структура в ионных соединениях AX<sub>3</sub> будет реализовываться тогда, когда анион способен по размерам удовлетворять октаэдрическому и тетраэдрическому катионному окружению. Структурный тип BiF<sub>3</sub> известен давно, но ионных соединений известно немного. В основном это: BiF<sub>3</sub>, YF<sub>3</sub>, CeF<sub>3</sub>, YbH<sub>2,55</sub>. Большинство структур реализовано в интерметаллических составах. Кубическая структура типа BiF<sub>3</sub> имеет и другое обозначение Fe<sub>3</sub>AI (или Li<sub>3</sub>Bi) [40]. В [40] также сказано, что структурного типа BiF<sub>3</sub> не должно быть (определение его было ошибочным). Есть структурный тип Fe<sub>3</sub>Al. Однако в банке структурных данных за 1997 год [20] структуре Fe<sub>3</sub>Al присвоен тип BiF<sub>3</sub>. В металлических соединениях структура типа BiF<sub>3</sub> представляет собой частично упорядоченный твёрдый раствор атомов, занимающих позиции фторов.



Рис. 8. Элементарная ячейка структуры BiF<sub>3</sub> (*a*) в «классическом» изображении, (б) – начало координат смещено на 3/4 по всем осям. Октаэдрическое и тетраэдрическое окружение анионов катионами (*в*).

В литературе для BiF<sub>3</sub> приводятся данные о четырёх кристаллических фазах.

Первая представлена выше.

Вторая: α-фаза, кубическая, с пространственной группой *P*-43*m*, *a* = 5,853 Å [39, 42], устойчива до 200°С. В ней атомы висмута, расположенные по тетраэдру, немного смещены со своих прежних положений при пространственной группе *Fm*3*m* [42].

Третья фаза ромбическая низкотемпературная, типа  $YF_3$ (*Pnma*, *Z* = 4) [43]. И про четвёртую фазу в [18] упоминается, как о не изученной до конца модификации, с большой кубической решёткой (*Z* = 24). Мы пока рассмотрим первую фазу с пространственной группой *Fm*3*m*, по которой назван структурный тип DO<sub>3</sub>.

В структуре BiF<sub>3</sub> связи вдоль пространственной диагонали элементарной кубической ячейки умеренно сжаты, а вдоль ребра куба значения их больше суммы радиусов анионов, т.е. связи растянуты.

Итак, структура типа BiF<sub>3</sub> в ионных кристаллах существует за счёт соприкосновения атомов вдоль диагональных направлений.

Может этим и определяется ограниченное число известных представителей этого структурного типа среди ионных соединений?

# 6. Прогноз новых соединений A<sup>+</sup>B<sup>3+</sup>O<sub>2</sub>

В табл. 9 представлены результаты прогноза структур семейства делафоссита. В строках представлены одновалентные катионы, в столбцах – трёхвалентные. Клеточки на пересечении строк и столбцов соответствуют химическим составам известных или прогнозируемых соединений. Рядом с символами катионов приведены типы их внешних электронных оболочек. Все катионы разбиты на группы, в зависимости от химических свойств и типов электронных оболочек. В пределах каждой группы катионы расположены по величине.

При составлении прогноза учитывалась величина соотношения радиусов катионов (R<sub>A</sub>/R<sub>B</sub>), по максимальному значению для структур типа α-NaFeO<sub>2</sub> она ограничена величиной 2,24. При (R<sub>A</sub>/R<sub>B</sub>) > 2,24 увеличивается вероятность синтеза соединений с другими структурными типами. Учитывалось наличие известных «соседних» структур.

В обоснование прогноза соединений  $TI^+BO_2$  можно сказать следующее. Такие соединения возможны по геометрическим условиям, т.к. радиус одновалентного таллия сравним с радиусом рубидия. А с рубидием известны структуры типа  $\alpha$ -NaFeO<sub>2</sub>. Синтезировано соединение  $TI_3^+TI^{3+}O_3$  в атмосфере инертного газа при 450°С. Наличие такого соединения подтверждено кристаллизацией в системе  $TI_2O-TI_2O_3-H_2O$  при 25°С [19]. Значит есть надежда на получение соединений с одновалентным таллием в сочетании с другими полуторными окислами.

# Таблица 9.

# Прогноз новых соединений А<sup>+</sup>В<sup>3+</sup>О<sub>2</sub>

Обозначения:

| ВΤΦ               | Высокотемпературная фаза                           |              |                                 |              | •                          |
|-------------------|----------------------------------------------------|--------------|---------------------------------|--------------|----------------------------|
| <b>c</b> 2        | Тип NaCl                                           | <i>c</i> 2   | ]Прогноз                        |              |                            |
| h1                | Тип δ-AgFeO₂                                       | <i>h</i> 1   | структурных                     | h1           | ) Менее                    |
| h2                | Тип β-RbScO₂                                       | h2           | }типов                          | h2           | } вероятный                |
| F5₁'              | Тип CuFeO₂ (делафоссит)                            | <b>F5</b> ₁' | среди новых                     | <b>F5</b> ₁" | <u>ј</u> прогноз           |
| F5 <sub>1</sub> " | Тип α-NaFeO₂                                       | <b>F5</b> ₁" | Јсоединений                     |              |                            |
| ť2                | α-LiFeO <sub>2</sub>                               | -            | -<br>-<br>-<br>-                |              | ·<br>·<br>·                |
| <i>r</i> 8        | Тип β-NaFeO₂                                       |              |                                 |              |                            |
| *                 | Структуры других типов                             | -            | -<br>-<br>-<br>-<br>-<br>-<br>- | -            | -<br>-<br>-<br>-<br>-<br>- |
| ?                 | Соединение синтезировано, но структура не известна |              |                                 |              |                            |

Двойными рамками выделены прогнозируемые составы и типы структур.

Из таблицы 9 исключены строки с Hg<sup>+</sup> и Pb<sup>+</sup>, т.к. соединений ABX<sub>2</sub> с этими элементами не известно. Штриховкой выделены прогнозируемые составы «второй очереди» по вероятности.

| $B^{3+} \rightarrow$ |               | Ni                | Со                | Cr                | V                 | Fe                   | Mn                | Ti                | Ga                            | In                            | TI                | AI                          | Sc                            | Y                 | La                | ←B <sup>3+</sup> |  |
|----------------------|---------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------------------|-------------------------------|-------------------|-----------------------------|-------------------------------|-------------------|-------------------|------------------|--|
| A⁺↓                  |               | 3d7               | 3 <i>d</i> 6      | 3 <i>d</i> 3      | 3d2               | 3 <i>d</i> 5         | 3 <i>d</i> 4      | 3 <i>d</i> 1      | 3d10                          | 4 <i>d</i> 10                 | 5 <i>d</i> 10     | 2 <i>p</i> 6                | 3 <i>p</i> 6                  | 4 <i>p</i> 6      | 5 <i>p</i> 6      | <b>A+</b> ↓      |  |
| Cs                   | ВΤΦ           |                   |                   |                   |                   | -                    |                   | -                 |                               | *                             |                   |                             |                               | h2                | F5₁"              | Cs               |  |
| 5 <i>p</i> 6         | ΗΤΦ           |                   |                   |                   |                   |                      |                   |                   | *                             | *                             | F5 <sub>1</sub> " |                             | *                             | F5₁"              | F5 <sub>1</sub> " | Cs               |  |
| Rb                   | 4 <i>p</i> 6  |                   | *                 | *                 | -                 | -                    | *                 | -                 | *                             | F5₁"                          | F5₁"              |                             | F5 <sub>1</sub> ", <i>h</i> 2 | F5₁"              | F5 <sub>1</sub> " | Rb               |  |
| K                    | ΒΤΦ           |                   |                   |                   |                   | 5<br>6<br>6          |                   | h2                | h2                            | h2                            | h2                | h2                          | h2                            | h2                | h2                | к                |  |
| 3 <i>p</i> 6         | ΗΤΦ           |                   | **                | rh2, *            | ?                 | ***                  | *                 | rh2               | rh2                           | rh2                           | F5 <sub>1</sub> " | rh2                         | F5 <sub>1</sub> "             | F5 <sub>1</sub> " | F5₁"              | К                |  |
| Na                   | 2 <i>p</i> 6  | F5 <sub>1</sub> "    | F5 <sub>1</sub> " | F5 <sub>1</sub> " | rh2                           | F5 <sub>1</sub> ", <b>c</b> 2 | c2,t2             | <i>r</i> 8,**               | c2,rh2                        | rh2,c2,r8         | *                 | Na               |  |
| Li                   | 1 <i>s</i> 2  | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | c2,t2, *             | **                | c2,*              | F5 <sub>1</sub> ", <i>r</i> 8 | *                             | c2,**             | ***                         | *                             | ***               | **                | Li               |  |
| ТΙ                   | 3s2           |                   | -                 | -                 |                   | -                    | -                 | F5₁"              | F5₁"                          | F5₁"                          | F5₁"              | F5₁"                        | F5₁"                          | F5₁"              | F5₁"              | ті               |  |
| In                   | 5s2           |                   |                   |                   |                   |                      |                   | F5₁"              | F5 <sub>1</sub> "             | F5₁"                          | F5₁"              | F5₁"                        | F5₁"                          | F5₁"              | F5₁"              | In               |  |
| Au                   | 5d10          |                   | -                 | -                 | -                 |                      | -                 | -                 |                               |                               |                   |                             |                               |                   |                   | Au               |  |
| Ag                   | 4 <i>d</i> 10 | F5 <sub>1</sub> ' | F5 <sub>1</sub> ' | F5 <sub>1</sub> ' | F5₁'              | F5 <sub>1</sub> ',r8 | F5₁'              | F5₁'              | <i>r</i> 8                    | F5₁'                          | F5₁'              | r8                          |                               |                   |                   | Ag               |  |
| Cu                   | ВΤΦ           | <i>h</i> 1        | h1                | <i>h</i> 1        | h1                | h1                   | h1                | h1                | h1                            | h1                            | F5₁'              | F5 <sub>1</sub> '           | F5₁'                          | F5₁'              | <i>h</i> 1        | Cu               |  |
| 3d10                 | НΤΦ           | F5₁'              | F5 <sub>1</sub> ' | F5 <sub>1</sub> ' | F5 <sub>1</sub> ' | F51'                 | F5₁'              | F5₁'              | F5₁'                          | F5₁'                          | F5₁'              | F5 <sub>1</sub> ', <b>*</b> | h2                            | F5₁'              | F5 <sub>1</sub> ' | Cu               |  |
| Pd                   | 4 <i>d</i> 9  | F5₁'              | F5 <sub>1</sub> ' | F5₁'              |                   | <u>_</u>             |                   | <u>n</u>          |                               |                               |                   |                             |                               |                   |                   | Pt               |  |
| Pt                   | 5 <i>d</i> 9  | F5 <sub>1</sub> ' | F51'              | F5 <sub>1</sub> ' | <u></u>           |                      |                   |                   |                               |                               |                   | .+                          |                               |                   |                   | Pd               |  |
| н                    | 1s0           | <b>h</b>          | <u>.</u>          | *                 | -                 | -                    | ;                 | -                 |                               |                               |                   | *                           | •<br>•<br>•                   | *<br>-            |                   | н                |  |

Таблица 9 (продолжение).

Таблица 9 (продолжение).

| $B^{3+} \rightarrow$ |               | Lu                       | Yb                            | Tm                                    | Er                            | Но                            | Dy                | Tb                | Gd                | Eu                | Sm                | Pm                       | Nd                | Pr                | Се                | ←B <sup>3+</sup> |
|----------------------|---------------|--------------------------|-------------------------------|---------------------------------------|-------------------------------|-------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|------------------|
| A⁺↓                  |               | 4 <i>f</i> 14            | 4 <i>f</i> 13                 | 4 <i>f</i> 12                         | 4 <i>f</i> 11                 | 4 <i>f</i> 10                 | 4 <i>f</i> 9      | 4 <i>f</i> 8      | 4f7               | 4 <i>f</i> 6      | 4 <i>f</i> 5      | 4 <i>f</i> 4             | 4 <i>f</i> 3      | 4 <i>f</i> 2      | 6s1               | <b>A+</b> ↓      |
| Cs                   | ВΤΦ           | h2                       | h2                            | h2                                    | h2                            | h2                            | h2                | h2                | h2                | h2                | h2                | h2                       | h2                | h2                | h2                | Cs               |
| 5 <i>p</i> 6         | ΗΤΦ           | rh2,t                    | F5 <sub>1</sub> "             | F5 <sub>1</sub> "                     | F5 <sub>1</sub> "             | F5 <sub>1</sub> "             | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | rh2                      | F5 <sub>1</sub> " | rh2               | F5 <sub>1</sub> " | Cs               |
| Rb                   | 4 <i>p</i> 6  | F5 <sub>1</sub> "        | <b>F5</b> ₁"                  | <b>F5</b> ₁"                          | F5₁"                          | F5₁"                          | F5₁"              | F5₁"              | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | rh2                      | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | Rb               |
| Κ                    | 3 <i>p</i> 6  | F5 <sub>1</sub> "        | <i>c</i> 2,F5 <sub>1</sub> "  | F5₁"                                  | F5 <sub>1</sub> "             | F5 <sub>1</sub> "             | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | rh2                      | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | К                |
| Na                   | 2 <i>p</i> 6  | F5 <sub>1</sub> "        | F5 <sub>1</sub> ", <b>c</b> 2 | F5 <sub>1</sub> ", <b>c</b> 2         | F5 <sub>1</sub> ", <b>c</b> 2 | F5 <sub>1</sub> ", <b>c</b> 2 | ***               | c2,t2             | *,c2              | c2,*              | c2,t2             | rh2                      | <i>t</i> 2,c2     | ť2                | *                 | Na               |
| Li                   | 1 <i>s</i> 2  | *                        | *                             | *                                     | F5 <sub>1</sub> "             | **                            | **                | ***               | **                | ***               | **                | U                        | *                 | *                 | *                 | Li               |
| TI                   | 6 <i>s</i> 2  | <b>F5</b> ₁"             | F5 <sub>1</sub> "             | F5 <sub>1</sub> "                     | F5 <sub>1</sub> "             | F5 <sub>1</sub> "             | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> "        | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | ТІ               |
| In                   | 5s2           | F5 <sub>1</sub> "        | F5₁"                          | F5₁"                                  | F5₁"                          | F5₁"                          | <b>F5</b> ₁"      | <b>F5</b> ₁"      | <b>F5</b> ₁"      | <b>F5</b> ₁"      | F5₁"              | F5₁"                     | F5 <sub>1</sub> " | F5 <sub>1</sub> " | F5 <sub>1</sub> " | In               |
| Au                   | 5 <i>d</i> 10 |                          | -<br>-<br>-<br>-              | •                                     | -<br>-<br>-<br>-              |                               | •                 | -                 | •                 |                   |                   | •                        |                   |                   |                   | Au               |
| Ag                   | 4 <i>d</i> 10 | rh1                      | rh1                           | rh1                                   | rh1                           | F5₁'                          | F5 <sub>1</sub> ' | F5₁'              | F5 <sub>1</sub> ' | F5₁'              | <b>F5</b> ₁'      | F5₁'                     | <b>F5</b> ₁'      | <b>F5</b> ₁'      | F5₁'              | Ag               |
| Cu                   | 3 <i>d</i> 10 | <b>F5</b> <sub>1</sub> ' | F5₁'                          | F5₁'                                  | F5₁'                          | F5₁'                          | F5 <sub>1</sub> ' | <b>F5</b> ₁'      | F5 <sub>1</sub> ' | rh1               | rh1               | <b>F5</b> <sub>1</sub> ' | rh1               | rh1               | <b>F5</b> ₁'      | Cu               |
| Pd                   | 4 <i>d</i> 9  |                          | -<br>-<br>-                   |                                       |                               | -                             |                   |                   |                   |                   |                   | -                        |                   |                   | -<br>-<br>-<br>-  | Pt               |
| Pt                   | 5 <i>d</i> 9  |                          |                               |                                       |                               |                               |                   |                   |                   |                   |                   |                          |                   |                   |                   | Pd               |
| Н                    | 1 <i>s</i> 0  |                          |                               | · · · · · · · · · · · · · · · · · · · |                               |                               |                   |                   | ·<br>·<br>·       |                   |                   |                          |                   |                   |                   | Н                |

Таблица 9 (окончание).

| B <sup>3+</sup> → |               | Ν    | В   | Р              | As  | Bi  | Cu           | Br               | Ag               | Au           | Мо  | Nb               | Та  | lr           | Pd       | Rh                | Ru   | ←B <sup>3+</sup> |
|-------------------|---------------|------|-----|----------------|-----|-----|--------------|------------------|------------------|--------------|-----|------------------|-----|--------------|----------|-------------------|------|------------------|
| A⁺↓               |               | 2s2  | 1s2 | 3s2            | 4s2 | 6s2 | 3 <i>d</i> 8 | 4 <i>p</i> 6     | 4 <i>d</i> 8     | 5 <i>d</i> 8 | 4d3 | 4d2              | 5d2 | 5 <i>d</i> 6 | 4d7      | 4 <i>d</i> 6      | 4d5  | A+↓              |
| Cs                | 5 <i>p</i> 6  | **   | *   |                |     |     | <i>r</i> 1   | 1<br>1<br>1<br>1 | 1<br>1<br>1<br>1 | *            |     | 1<br>1<br>1<br>1 |     |              |          |                   |      | Cs               |
| Rb                | 4 <i>p</i> 6  | c2,* | ?   |                |     |     | *            |                  |                  | *            |     |                  |     |              |          |                   |      | Rb               |
| K                 | 3 <i>p</i> 6  | ***  | *   |                |     | *   | *            |                  |                  | *            |     |                  |     |              |          |                   |      | К                |
| Na                | 2 <i>p</i> 6  | **   | *   |                | *   | *   | *            |                  |                  |              | rh? | h?               |     |              | F5₁"     | F5 <sub>1</sub> " | F5₁" | Na               |
| Li                | 1s2           |      | *   |                |     | *   |              | ?                |                  |              | rh? | h?               |     |              | <u>.</u> | F5 <sub>1</sub> " | *    | Li               |
| TI                | 6s2           | c2   |     |                |     |     |              |                  |                  |              |     |                  |     |              |          |                   |      | TI               |
| In                | 5s2           |      |     |                |     |     |              |                  |                  |              |     |                  |     |              |          |                   |      | In               |
| Au                | 5 <b>d</b> 10 |      |     |                |     |     |              |                  |                  |              |     |                  |     |              |          |                   |      | Au               |
| Ag                | 4 <i>d</i> 10 | *    | *   |                |     |     |              |                  | *                |              |     |                  |     |              |          | F5₁'              |      | Ag               |
| Cu                | 3 <i>d</i> 10 |      |     |                |     |     |              |                  |                  |              |     |                  |     |              | *        | F5₁'              |      | Cu               |
| Pd                | 5 <i>d</i> 9  |      |     |                |     |     |              |                  |                  |              |     |                  |     |              |          |                   |      | Pt               |
| Pt                | 4 <i>d</i> 9  |      |     | <br> <br> <br> |     |     |              |                  |                  |              |     |                  |     |              |          |                   |      | Pd               |
| Н                 | 1 <i>s</i> 0  |      | *** |                |     |     |              |                  |                  |              |     |                  |     |              | •        | *                 | -    | Н                |

#### 7. Заключение

Результаты анализа показывают, что соединений с делафосситоподобными структурами можно синтезировать около сотни. Но новых делафосситоподобных соединений будет синтезировано больше «предсказанной сотни». Например, в составах с одновалентными палладием и платины.

Есть ряд кристаллохимических закономерностей которые можно использовать при целенаправленном поиске и синтезе новых объектов для исследования.

Итак, структурные типы F51 можно подразделить на две части.

Структуры типа CuFeO<sub>2</sub> (F5<sub>1</sub>'), собственно делафоссита (верхняя часть табл. 3). Катион A<sup>+</sup> имеет KЧ = 2 (гантель). Такие структуры известны с A<sup>+</sup> = Ag, Cu, Pd, Pt, H и видимо возможны для A<sup>+</sup> = Au. Для известных структур этого типа ( $R_A/R_B$ ) = 0,45 ÷ 1,10. Величина *z/c* для аниона в структурах типа CuFeO<sub>2</sub> практически постоянна, определяется суммой радиусов ( $R_A + R_X$ )/*c* и для оксидов не может быть меньше 0,1 и больше 0,122. В соединениях типа CuFeO<sub>2</sub> возможна повышенная электропроводность и теплопроводность, а при увеличении температуры они могут стать гексагональными типа  $\delta$ -AgFeO<sub>2</sub>.

Структуры типа  $\alpha$ -NaFeO<sub>2</sub> (F5<sub>1</sub>") (нижняя часть табл. 3). В известных соединениях (R<sub>A</sub>/R<sub>B</sub>) = (1,1 ÷ 2,24). В кристаллах типа  $\alpha$ -NaFeO<sub>2</sub> могут быть фазовые переходы: При (R<sub>A</sub>/R<sub>B</sub>) =1,13 – 1,37 в НТФ типа NaCl. При (R<sub>A</sub>/R<sub>B</sub>) > 1,60 в ВТФ гексагональную типа  $\beta$ -RbScO<sub>2</sub>.

Среди сульфидов и селенидов составов ABX<sub>2</sub> соединений с делафосситоподобными структурами известно не очень много. Прогноз новых соединений типа α-NaFeO<sub>2</sub> в этих системах выполнен Н.Н. Киселёвой и Е.М. Савицким и опубликован в работах [4, 5].

# 8. Список литературы

- Shannon R.D. Revised effective ionic radii systematic jf interatomic distances in halides and chalcogenides. // Acta Cryst. 1976. V. A32, № 5. P. 751–767.
- Киселёва Н.Н., Савицкий Е.М. Прогноз неорганических соединений состава АВО<sub>3</sub> с применением обучающейся ЭВМ. // Докл. АН СССР. 1977. Т. 235, № 6. С. 1367–1370.
- 3. Савицкий Е.М., Киселёва Н.Н. Кибернетическое прогнозирование существования фаз состава АВХ<sub>3</sub>. // Изв. АН СССР, неорган. материалы. 1979. Т. 15, № 6. С. 1101–1102.
- Прогнозирование в материаловедении с применением
   ЭВМ. / Е.М. Савицкий, В.Б. Грибуля, Н.Н. Киселёва и др. М.: Наука. 1990.-86с.
- 5. **Киселёва Н.Н.** Компьютерное конструирование неорганических соединений. М.: Наука. 2005.-288с.
- Безносиков Б.В. Синтез кристаллов и исследование фазовых переходов в галоидных соединениях АВХ<sub>3</sub> со структурой типа перовскита. Дисс. канд. физ.-мат. наук. Красноярск. ИФ СО АН СССР. 1977. 150 с.
- 7. Фазовые переходы в кристаллах галоидных соединений АВХ<sub>3</sub>. / Александров К.С. и др. Новосибирск. Наука. 1981.-264с.
- Безносиков Б.В., Александров К.С. Кристаллохимия и прогноз структур соединений А₂ВХ₄. Препринт № 243-Ф. Красноярск. ИФ СО АН СССР. 1983.-45 с.; Кристаллография. 1985. Т. 30. № 3. с. 509–512 и № 5. С. 919–926.
- 9. Александров К.С., Безносиков Б.В. Структурные фазовые переходы в кристаллах. (семейство сульфата калия). Новосибирск. «Наука». 1993.-287 с.
- Безносиков Б.В., Александров К.С. Эффективность прогноза новых кристаллов, основанного на принципах классической кристаллохимии. Препринт № 753-Ф. Красноярск. ИФ СО РАН. 1994.-48 с.

- Безносиков Б.В., Александров К.С. Кристаллохимия и прогноз структур соединений А<sub>2</sub>ВХ<sub>4</sub>. Труды II Международной конференции «Реальная структура и свойства ацентричных кристаллов». 1995. Александров. ВНИИСИМС. С. 79–93.
- 12. Александров К.С., Безносиков Б.В. Перовскитоподобные кристаллы. Новосибирск. «Наука» Сибирское предприятие РАН. 1997.-216с.
- 13. Александров К.С., Безносиков Б.В. Перовскиты. Настоящее и будущее. Новосибирск. Изд-во СО РАН. 2004.-231 с.
- 14. Киселёва Н.Н. Компьютерное конструирование неорганических соединений, перспективных для применения в электронике, с использованием баз данных и методов искусственного интеллекта. Автореферат дисс. докт. хим. наук. М.: 2004. 48 с.
- 15. Коллерман Д.Г., Габуда С.П., Журавлёв Н.А., Семёнова А.С., Денисова Т.А., Плетнёв Р.Н. ЯМР Н и Li в дефектном кобальтите Li<sub>0,6</sub>CoO<sub>2</sub> // Журнал структурной химии. 2007. Т. 48, № 3. С. 507–511.
- 16. **Физический энциклопедический словарь.** М.: «Советская энциклопедия». 1960. Т. 1. 664 с.
- 17. Шафрановский И.И. История кристаллографии. XIX век. Л.: «Наука». 1980.-324 с.
- Нараи-Сабо И. Неорганическая кристаллохимия. Будапешт.: Изд-во АН Венгрии. 1969. 504 с.
- 19. **Диаграммы состояния систем тугоплавких оксидов**: Справочник. Вып. 5. Двойные системы. Ч. 3. Л.: Наука. 1987.-287 с.
- 20. **JCPDS** International Centre for Diffraction Data. 1997. V. 1.30.
- 21. **ICSD** / Retrieve 2.01. by Dr. Michael Berndt 1990-97. Jun 14. 1997.
- 22. Пирсон У.Б. Кристаллохимия и физика металлов и сплавов. пер. с англ. М.: «Мир». Ч. 1.-419 с. Ч. 2.-471 с.
- Prewitt C.T., Shannon R.D., Rogers D.B. Chemistry of noble metal oxides. II. Crystal structures of PtCoO<sub>2</sub>, PdCoO<sub>2</sub>, CuFeO<sub>2</sub> and AgFeO<sub>2</sub>. // Inorg. Chem. 1971. V. 10, № 4. P. 719–723.

- Kõhler B.U., Jansen M. Darstellung und Strukturdaten von "Delafossiten" CuMO<sub>2</sub> (M = Al, Ga, Sc, V). // Z. anorg. allg. Chem. 1986. Bd. 543. S. 73–80.
- Scheld W., Hoppe R. Über den α-NaFeO<sub>2</sub>-Typ: Zur Kenntnis von NaCrO<sub>2</sub> und KCrO<sub>2</sub>. // Z. anorg. allg. Chem. 1989. Bd. 568. S. 151–156.
- Hoppe R., Sabrowsky H. Über Scandate, Yttrate, Indate und Thallate der Alkalinutalle. // Z. anorg. allg. Chem. 1968. Bd. 357. S. 202–214.
- Wolf R., Hoppe R. Zur Kentnis des a-NaFeO<sub>2</sub>-Typs: Über KPrO<sub>2</sub>.
  // Z. anorg. allg. Chem. 1989. Bd. 568. S. 147–150.
- 28. Hu L., Xiong Z., Ouyang C. et al. Ab initio on the stability and electronic structure of LiCoO<sub>2</sub> (003) surfaces. // Phys. Rev B. 2005. V. 71, № 12. 125433 (1-10).
- Wang X., Loa I., Kunc L. et al. Effect of pressure on the structural properties and Raman modes of LiCoO<sub>2</sub>. // Phys. Rev B. 2005. V. 72, № 22. 224102 (1-8).
- 30. Hirakawa K., Kadowaki H., Ubukoch K. Experimental studies of triangular lattice antiferromagnets with S = ½: NaTiO<sub>2</sub> and LiNiO<sub>2</sub>.
  // J. Phys. Soc. Japan. 1985. V. 54, № 9. P. 3526–3536.
- Hobbie K., Hoppe R. Zum Aufbau von NaRhO<sub>2</sub>. // Z. anorg. allg.
   Chem. 1988. Bd. 565. S. 206–110.
- 32. Köhler B.U., Jansen M. // J. Solid State Chem. 1987. V. 71, № 2.
   P. 566–569.
- Brun H., Hoppe R. Neue kubische Formen von NaMO<sub>2</sub> (M = Sc, Y, Dy, Tm, Yb, Lu), K<sub>2</sub>MO<sub>3</sub>, Rb<sub>2</sub>MO<sub>3</sub>, (M = Ce, Pr, Th), und Cs<sub>2</sub>ThO<sub>3</sub>. // Z. anorg. allg. Chem. 1977. Bd. 450. S. 144–154.
- 34. Wiench H., Brachtel G., Hoppe R. // Die Kristallstruktur von β-RbScO<sub>2</sub>. // Z. anorg. allg. Chem. 1977. Bd. 436. S. 169–172.
- 35. Brun H., Hoppe R. Über RbSEO<sub>2</sub> (SE = La, Nd, Sm, Eu, Gd) sowie CsNdO<sub>2</sub>. // Z. anorg. allg. Chem. 1975. Bd. 417. S. 213–220.
- Jansen M., Hoppe R. // Z. anorg. allg. Chem. 1975. Bd. 417. S. 31–34.

- 37. Marezio M. The crystal structure of LiGaO<sub>2</sub>. Acta Cryst. 1965. V.
  19, № 3. P. 481–484.
- Li J., Sleight A.W. Structure of β-AgAlO<sub>2</sub> and structural systematics of tetrahedral MM'X<sub>2</sub> compounds. // J. Solid State Chem. 2004.
   V. 177, № 3. P. 889–894.
- 39. Бокий Г.Б. Введение в кристаллохимию. М.: Изд-во МГУ. 1954. 490 с.
- 40. **Уэллс А.** Структурная неорганическая химия. Пер. с англ. М.: «Мир». в 3-х томах. 1987-1988.
- 41. **Landolt-Börnstein.** Atom- und Molekular- physic. 4 Teil, Kristalle, Berlin-Göttingen-Heidelberg, Springer-Verlag. 1955.-1008 S.
- 42. Hung F., Fricke R. Der Kristallbau von α-BiF<sub>3</sub>. // Z. anorg. allg.
   Chem. 1949. Bd. 258. S. 198–204.
- Greis O., Martinez-Ripoll M. Darstellung, Temperaturverhalten und Kristallstrukture von BiF<sub>3</sub>. // Z. anorg. allg. Chem. 1977. Bd. 436, N 9. S. 105–112.

Ответственный за выпуск Б.В. Безносиков

Подписано в печать 09.10.2007. Гарнитура "Arial" Уч. изд. л. 2. Заказ № 48. Тираж 50 экз. Отпечатано в типографии Института физики им. Л.В. Киренского СО РАН 660036. Россия. Красноярск. Академгородок.