РОССИЙСКАЯ АКАДЕМИЯ НАУК ОРДЕНА ЛЕНИНА СИБИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ ФИЗИКИ им. Л.В. КИРЕНСКОГО

Препринт№ 830 Ф

Кристаллохимия и прогноз новых соединений ABCX₅

Б.В. Безносиков

Красноярск 2005

УДК 548.3

Приводятся результаты кристаллохимического анализа структур в составах ABCX₅ (A, B, C – катионы, X – анион). Прогноз новых соединений со структурами типов: $TIPb_2CI_5$, $RbPb_2Br_5$, K_2PrCI_5 , Y_2HfS_5 , Cs_2DyCI_5 , K_2SmF_5 , результаты которого показывают, что можно синтезировать более190 новых соединений.

Работа выполнена в лаборатории кристаллофизики Института физики им. Л.В. Киренского СО РАН в рамках программы Президиума РАН № 9.1 и интеграционного проекта СО РАН № 88.

Оглавление

1.	Предисловие	2
2.	Введение	3
3.	Анализ структур	4
3.1	Составы АВ ₂ Х ₅	6
	Структуры типа TIPb₂Cl₅	6
	Структуры типа RbPb₂Br₅	11
	Прогноз новых соединений АВ₂Х₅	13
3.2	Составы А ₂ ВХ ₅	16
	Структуры типов К₂PrCl₅ и Y₂HfS₅	16
	Структуры типа К₂SmF₅	20
	Закономерности строения структур	21
	Структуры, содержащие октаэдры	21
	Прогноз новых соединений А₂ВХ₅	25
4.	Закономерности	27
5.	Выводы	28
6.	Список литературы	30

© Институт физики им. Л.В. Киренского СО РАН, 2005

1. Предисловие

«На выращенном кристалле KPb₂Cl₅ оптического качества, который характеризуется широким диапазоном прозрачности 0,3 – 20 μ*m*, реализованы генерации на соответствующих переходах Dy и Er – 1,3, 2,43, 4,3 μ*m* при накачке полупроводниковыми лазерами.»

Так сказано в разделе «Твердотельные лазерные среды» рекламного проспекта Конструкторско–технологического института монокристаллов Объединённого института геологии им. А.А. Трофимука СО РАН, 630058, г. Новосибирск. Ул. Русская, 43. За дополнительной информацией советуют обращаться к зав. лабораторией д.т.н. Исаенко Людмиле Ивановне. Тел/факс (383-2) 333-843.

Монокристаллы KPb₂Cl₅, KPb₂Br₅ выращены в этом институте, и данное обобщение стимулировано исследованием физических свойств этих кристаллов. Цель публикации: кристаллохимический анализ структур в составах ABCX₅, где A, B, C – катионы, X – анион. При таком

представлении, кристаллы AB₂X₅ или A₂BX₅ являются частными вариантами составов ABCX₅.

Заранее можно ожидать особенности в образовании структур в этих составах. В первую очередь это определяют пять анионов, входящих В формулы соединений. Анионы формируют матрицу кристалла. В составах АВХ₃ в основном реализуются октаэдрические структуры [34]. В составах АВСХ₄ [26] образуются тетраэдрические структуры (семейство α-K₂SO₄) и сохраняется влияние октаэдрического слоистых структурах [24, 25]. строения В В составах ABCX₅ октаэдрические структуры известны, но объёмного октаэдрического каркаса в них нет. Будем надеяться на проявление в кристаллах ABCX₅ оригинальных физических свойств, которые оправдают этот союз пяти анионов. Если будут получены новые монокристаллы, а такая надежда есть, тогда эти материалы получат дальнейшее распространение.

2. Введение

Соединения ABCX₅ известны среди галогенидов, оксидов, сульфидов, селенидов, насчитывают более 350 представителей и порядка 50 структурных типов. Чтобы разобраться во всех структурах, потребуется много времени. Поэтому начнём это делать постепенно, по мере проявления интереса к этим объектам.

Соблюдая баланс валентностей анионов и катионов можно представить общие химические формулы простых соединений:

Анион одновалентный	Анион двухвалентный	Анион трёхвалентный
$A^{+}B_{2}^{2+}X_{5}^{-}\checkmark$	$A^{2+}B_2^{4+}X_5^{2-}\checkmark$	A ³⁺ B ₂ ⁶⁺ X ₅ ³⁻
$A_2^+B^{3+}X_5^-\checkmark$	$A_2^{3+}B^{4+}X_5^{2-}\checkmark$	$A^{5+}B_2^{5+}X_5^{3-}$
	$A_2^{2+}B^{6+}X_5^{2-}\checkmark$	Возможен переход к↓
	Есть А ₃ ⁿ⁺ Х ₅ ^{2−} ✓	$A_3^{5+}X_5^{3-}$

(Галочкой отмечены реализованные составы.)

Можно представить сложные составы, если пары одинаковых катионов заменить двумя с равной суммарной валентностью. Например: $B_2^{2^+} \rightarrow B^+B^{3^+}; B_2^{3^+} \rightarrow B^{2^+}B^{4^+}; B_2^{4^+} \rightarrow B^{3^+}B^{5^+}; B_2^{5^+} \rightarrow B^{4^+}B^{6^+}.$

Возможны составы:

Анион одновалентный	Анион двухвалентный	Анион трёхвалентный
$A^{+}B^{+}C^{3+}X_{5}^{-} \checkmark$	A ²⁺ B ³⁺ C ⁵⁺ X ₅ ²⁻	A ⁵⁺ B ⁴⁺ C ⁶⁺ X ₅ ³⁻
	A ²⁺ B ⁴⁺ C ⁴⁺ X ₅ ²⁻	
	A ⁺ B ³⁺ C ⁶⁺ X ₅ ^{2−} ✓	
	A ⁺ B ⁴⁺ C ⁵⁺ X ₅ ²⁻	

Часть из них известна. Наиболее вероятно появление усложнённых составов в тех структурах, в которых катионы В находятся в двух разных кристаллографических позициях. И наибольшее число их возможно при двухвалентных анионах.

3. Анализ структур

Распространённые структурные типы соединений АВСХ₅ приведены в таблице 1. Из которой видно, что большинство соединений синтезировано среди оксидов.

Таблица1

Некоторые структурные типы соединений АВСХ₅.

Обозначения. ВТФ – высокотемпературная фаза. ФВД – фаза высокого давления. Круглыми скобками выделены составы, которыми принято обозначать структурный тип.

Соединение	Примечания	Пространственная		А	Н	И	0	Н	Ы
		группа	F^{-}	Cl⁻	Br ⁻	Ι-	0 ^{2–}	S ²⁻	Se ^{2–}
Dy ₂ TiO ₅	BTΦ (CaF ₂)	Fm3m, Fd3m	+	+	+	•	+		
Dy ₂ TiO ₅	ВТФ, ФВД	P6 ₃ /mmc, P6 ₃ mc, P62c					+		
NaSn ₂ F ₅		P4 ₂ /nbc	+				+		
(RbPb ₂ Br ₅)		I4/mcm		+	+	+			
(La ₂ ReO ₅)		I4/m					+		
(Eu ₂ ReO ₅)		P4/n					+		
(Fe ₂ TiO ₅)		Bbmm					+		
$(K_2VO_2F_3)$		<i>Pnma</i> или <i>Pna</i> 2₁					+		
(K ₂ PrCl ₅)		Pnma		+	+	+	+	+	
(Y ₂ TiO ₅)		Pnma					+		
(Cs ₂ DyCl ₅)		Pbnm		+					
(BaU ₂ S ₅)		Pcm2₁						+	+

4

(K_2SmF_5)	Pna2₁	+						
(Y_2HfS_5)	Pnma						+	+
(Pb ₂ MoO ₅)	C2/ <i>m</i> , β ≈ 115°					+		
(Gd_2GeO_5)	$P2_1/c, \ \beta \approx 105^\circ$					+		
(TIPb ₂ Cl ₅)	$P2_1/c, \ \beta \approx 90^\circ$		+	+	+			+
(Dy ₂ GeO ₅)	<i>I</i> 2/ <i>a</i> , β ≈ 102°					+		
(Er ₂ ReO ₅)	$P2_1/n, \ \beta \approx 107^\circ$					+		
(FeU_2S_5)	C2/c, $\beta \approx 96^{\circ}$						+	+

Хочется начать анализ с высокосимметричных структур, но в этих составах их мало. В табл. 1 первым структурным типом обозначена высокотемпературная флюоритоподобная фаза Dy₂TiO₅, содержащая анионные вакансии, с пространственной группой (пр. гр.) *Fm*3*m*, *a* = 5,15 А [6]. С учётом сверхпериодичности рентгенограмма может быть проиндицирована исходя из удвоенных параметров *a* = 10,30 Å и пр. гр. Fd3m [33]. Таких соединений известно порядка десяти. Кубические фазы высокотемпературные и при охлаждении испытывают структурные переходы с понижением симметрии. Для Dy₂TiO₅ известно три модификации. Кубическая фаза существует от 1680 до 1875°С – температуры плавления модификации. В области 1680 – 1350°С устойчива гексагональная фаза, которая ниже 1350°С становится ромбической [33]. Эти кристаллы из-за высоких температур фазовых переходов труднодоступны для исследования, и в данной публикации рассматриваться не будут.

В галоидных соединениях ABCX₅ (при одновалентных анионах) реализуются два типа наиболее простых составов $A^+B_2^{2+}X_5^-$ и $A_2^+B^{3+}X_5^-$. Рассмотрим их по порядку.

3.1 Составы АВ₂Х₅

Структуры типа TIPb₂Cl₅

Рис. 1. Структуры: KPb_2Cl_5 (*a*), тип $TIPb_2Cl_5$; и $KPbLaF_6$ (*б*), тип гагаринита, в послойном изображении. В каждом слое KPb_2Cl_5 представлено по две элементарных ячейки, в $KPbLaF_6$ – четыре.

Для визуального представления структур в этой публикации использован метод послойного изображения. Структуры построены по координатам атомов и относительные величины ионов соответствуют эффективным ионным радиусам по системе Шеннона [23]. Мысленно накладывая слои друг на друга, можно представить координационные полиэдры катионов. Конечно, эта процедура требует некоторого напряжения и достаточного воображения, но пространственные проекции для низкосимметричных структур не обладают наглядностью.

6

Моноклинные кристаллы типа $TIPb_2CI_5$ ($P2_1/c$) [9, 18], в другом обозначении $NH_4Pb_2CI_5$, известны в хлоридах, бромидах, иодидах и есть селенид PbU_2Se_5 с подобной структурой [17].

В KPb₂Cl₅ (см. рис. 1, *a*) ионы калия находятся в одном слое в середине элементарной ячейки. А между этими слоями, перпендикулярно оси *x*, расположены три слоя атомов, содержащих свинец. Эта слоистость в распределении катионов может сказаться на проявлении физических свойств монокристаллов.

Видно, что прафаза структур типа TIPb₂Cl₅ (Рис. 1, *a*) двухслойная: слои с x = 1/4 и 3/4 почти подобны, разница в строении слоёв с x = 1/2 и 1;(0) определяется различием радиусов ионов калия и свинца. Если в каждый слой на рис. 1, *a* добавить по одному аниону на элементарную ячейку, то получится структура, подобная типу гагаринита в KPbLaF₆, рис. 1, *б*. В структуре KPbLaF₆ Pb и La разупорядочены и все катионы имеют координацию девять – трёхшапочная тригональная призма (см. левую картинку на первой странице препринта). Это тригональная призма, у которой на боковых гранях три аниона образовали «шапочки». Структуры типов: TIPb₂Cl₅ наследуют такую координацию. Но в составах не достаёт одного аниона. Поэтому один анион (из шапочки), который мог бы быть девятым, становится общим с анионным окружением соседнего катиона и образуется двухшапочная тригональная призма (см. правую картинку на первой странице) или деформированные её остатки.

Наследственность к образованию анионной тригональной призмы с

шапочками идёт И ОТ структур сформировавших прародителей, кристаллическую решётку. А именно, от структурного типа PbCl₂ (тип котуннита), в котором тоже содержатся подобные высокой анионные полиэдры С координацией.

На рисунке (слева) представлена структура PbCl₂, построенная по координатам атомов [20]. Считается [29,32], что в этой структуре свинец имеет КЧ = 9. Если мысленно накладывать слои атомов

PbCl₂, Pnam, Z = 4

друг на друга, то можно увидеть, идеализировав картинку, что свинец действительно окружён девятью хлорами. У свинца координационный полиэдр – трёхшапочная тригональная призма.

Параметры элементарных ячеек структур AB₂X₅ приведены в табл. 2, а координаты атомов некоторых из них – в табл. 3. Угол моноклинности в кристаллических решётках близок к 90 градусам. Поэтому первые исследователи структуру KPb₂Cl₅ определили ромбической [6].

Таблица2

Соединение	Литература	<i>a</i> , Å	b, Å	<i>c</i> , Å	β (град.)	Плотность (г/см ³)
Хлориды						
InSn₂Cl₅	[2, 6]	8,927	8,,007	12,523	β =90,00	3,929
KNd ₂ Cl ₅	[6]	8,944	7,872	12,05	β =90,000	3,762
KEu ₂ Cl ₅	[6]	8,853	7,853	12,61	β =90,129	3,950
KPb ₂ Cl ₅	[31]	8,854	7,927	12,485	β =90,05	4,780
KPb ₂ Cl ₅	[5]	8,877	7,939	12,511	β =90	4,743
KSm₂Cl₅	[6, 21]	8,880	7,848	12,62	β =90,085	3,903
KSn ₂ Cl₅	[2]	8,950	7,963	12,670	β =90 ,1	3,492
KSr ₂ Cl ₅	[5, 18]	8,881	7,855	12,665	β =90	2,944
KSr ₂ Cl ₅	[6]	8,872	7,843	12,63	β =89,92	2,959
NH ₄ Pb ₂ Cl ₅	[18]	9,018	7,981	12,502	β =90,09	4,500
NH ₄ Pb ₂ Cl ₅	[5, 6]	9,035	7,967	12,491	β =90	4,501
$NH_4Sr_2CI_5$	[5]	9,013	7,897	12,650	β =90	2,733
RbEu ₂ Cl ₅	[6]	8,9913	7,8829	12,6372	β =90,196	4,202
RbPb ₂ Cl ₅	[5]	9,002	8,010	12,550	β =90	4,969
RbSm ₂ Cl ₅	[6]	9,016	7,903	12,64	β =90,134	4,152
RbSr ₂ Cl ₅	[5]	9,011	7,927	12,686	β =90	3,206
TIPb ₂ Cl ₅	[18]	8,950	7,886	12,568	β =90	5,960
TISr ₂ Cl ₅	[2]	9,00	7,86	12,61	β =90 ,1	4,144
Бромиды						
CsBa ₂ Br ₅	[6]	9,985	8,660	13,82	β =90,129	4,484
$InPb_2Br_5$	[2, 6]	9,279	8,312	13,018	β =89,98	6,143
InSm₂Br₅	[6]	9,3769	8,2804	13,2606	β =90,01	5,259
InSr₂Br₅	[2,6]	9,378	8,281	13,26	β =90,03	4,448
KPb_2Br_5	[31]	9,256	8,365	13,025	β =90,00	5,618

Структуры типа TIPb₂Cl₅, (*P*2₁/*c*, *Z* = 4)

KPb ₂ Br ₅	[5]	9,265	8,376	13,065	β =90	5,588
KPb ₂ Br ₅	[2, 6]	9,264	8,380	13,066	β =90,06	5,587
KSr₂Br₅	[6]	9,2970	8,2974	13,2767	β =89,784	3,981
KSr₂Br₅	[2, 6]	9,320	8,300	13,292	β =90,06	3,965
$NH_4Pb_2Br_5$	[5, 6]	9,394	8,414	13,052	β =90	5,356
RbBa₂Br₅	[6]	9,810	8,583	13,71	β =90,119	4,370
RbSr₂Br₅	[6]	9,434	8,353	13,30	β =89.713	4,181
RbSr₂Br₅	[6]	9,445	8,350	13,30	β =90,05	4,178
TIPb ₂ Br ₅	[6]	9,294	8,344	12,98	β =89,83	6,718
TIPb ₂ Br ₅	[18]	9,304	8,336	13,004	β =90	6,705
Иодиды						
CsBa ₂ I ₅	[6]	10,61	9,304	14,69	β =90,208	4,767
$CsEu_2I_5$	[6]	10,22	9,085	14,22	β =90,31	5,387
CsSr ₂ I ₅	[6]	10,29	9,144	14,33	β =90,03	4,640
InSr ₂ I ₅	[6]	9,982	8,914	14,24	β =89,99	4,847
InSr ₂ I ₅	[2]	9,979	8,915	14,249	β =90,03	4,702
KBa₂I₅	[6]	10,33	9,178	14,68	β =89,581	4,522
KEu ₂ I ₅	[6]	9,936	8,929	14,22	β =90,02	5,145
KSm₂I₅	[6]	9,965	8,925	14,26	β =90,16	5,103
KSr₂I₅	[2, 6]	9,982	9,004	14,30	β =89,94	4,387
RbBa₂I₅	[6]	10,36	9,257	14,74	β =90,356	4,667
RbEu₂I₅	[6]	10,05	9,000	14,21	β =90,32	5,289
RbNd ₂ I ₅	[6]	10,14	9,027	14,31	β =90,118	5,109
RbSm₂l₅	[6]	10,07	9,007	14,25	β =90 ,168	5,242
TISm ₂ I ₅	[6]	10,02	8,910	14,16	β =90,99	5,987
Селенид						
PbU ₂ Se ₅	[17]	8,605	7,788	12,27	β =90,0	5,111

Таблица3

Атом	Пара-	KPb ₂ Cl ₅	KPb ₂ Br ₅	KSm ₂ Cl ₅	TIPb ₂ Cl ₅	NH ₄ Pb ₂ Cl ₅	PbU ₂ Se ₅
(позиция)	метры	[31]	[31]	[21]	[9]	[18]	[17]
	a (Å)	8,854	9,256	8,8806	8,954	9,018	8,605
	b (Å)	7,927	8,365	7,8481	7,92	7,981	7,788
	<i>c</i> (Å)	12,485	13,025	12,6277	12,487	12,502	12,27
	β	90,05	90	90,085	90	90,09	90
А	x/a	0,5092	0,5099	0,5090	0,51	0,4940	0,5115
(4e)	y/b	0,0514	0,0542	0,0471	0,052	0,0594	0,0135
	z/c	0,1696	0,1662	0,1685	0,167	0,1666	0,1797
B1	x/a	0,0065	0,0108	0,00085	0,004	-0,0047	-0,0027
(4e)	y/b	0,0058	0,0025	0,02383	0,014	0,0095	0,0315
	z/c	0,1742	0,175	0,17682	0,174	0,1744	0,1807
B2	x/a	0,2547	0,2559	0,25131	0,253	0,2490	0,2523
(4e)	y/b	0,4359	0,4329	0,43063	0,435	0,4365	0,4197
	z/c	0,9937	0,9937	0,99295	0,994	0,9937	0,9914
	x/a	0,9585	0,9578	0,9609	0,961	0,0420	0,0478
X1	y/b	0,1655	0,1648	0,1611	0,167	0,1656	0,1631
(4e)	z/c	0,4023	0,4022	0,4010	0,404	0,4052	0,4011
	x/a	0,2218	0,222	0,2196	0,216	0,2838	0,2805
X2	y/b	0,0405	0,0391	0,0463	0,036	0,0423	0,0411
(4e)	z/c	0,9986	0,9981	0,9975	0,998	0,9990	0,998
	x/a	0,5401	0,5419	0,5374	0,536	0,4603	0,4593
X3	y/b	0,1798	0,1819	0,1718	0,177	0,177	0,1651
(4e)	z/c	0,4186	0,4210	0,4123	0,417	0,4221	0,4121
	x/a	0,2356	0,2366	0,2320	0,231	0,2716	0,2668
X4	y/b	0,3117	0,3130	0,3061	0,313	0,3143	0,3043
(4e)	z/c	0,2204	0,2199	0,2176	0,221	0,2197	0,2189
	x/a	0,7702	0,7677	0,7819	0,775	0,7225	0,7238
X5	y/b	0,3449	0,3463	0,3309	0,344	0,3464	0,3317
(4e)	z/c	0,1885	0,1881	0,1842	0,188	0,1880	0,184

Структурные параметры некоторых соединений AB₂X₅ с пространственной группой *P*2₁/*c* (*Z* = 4).

Структуры типа RbPb₂Br₅

В составах ABCX₅ известны галоидных соединения С тетрагональными структурами типа $RbPb_2Br_5$ (*I4/mcm*, Z = 4), другое обозначение – тип NH₄Pb₂Br₅ [1, 2], с координационной формулой [Rb^XPb₂^{VIII}Br₅] (см. рис. 2 и табл. 4). Ряд соединений известны в двух модификациях: структурных тетрагональной типа RbPb₂Br₅ В И Моноклинная структура под моноклинной типа TIPb₂Cl₅. высоким давлением может переходить в тетрагональную, как в KPb₂Br₅ [2] и в ТІРb₂Br₅ [6]. Но пока сообщений о таких экспериментах мало.

На рис. 2 (правая часть) представлена тетрагональная структура TI₅Se₂I, которая является антиподом структуры RbPb₂Br₅. Такие структуры известны в трёх составах, см. табл. 4. Они обладают повышенной плотностью, т.к. матрицу кристалла образуют тяжёлые атомы таллия. Структурные параметры некоторых соединений представлены в табл. 5.

Puc. 2. Структуры KPb_2Br_5 (тип $RbPb_2Br_5$) и TI_5SeI – антипод первой структуры, в послойном изображении.

Таблица4

Структуры типа RbPb₂Br₅ (I4/mcm, Z = 4)

Соединение	Литература	Примечания	<i>a</i> , Å	<i>c</i> , Å	Плотность (г/см ³)
InPhala	[2 6]		8 892	15 121	6 465
InSn₂Br₅	[2, 0]		8.348	14.34	4 993
InSn₂Br₅	[0]		8 285	14 438	5.038
InSn₂l₅	[2, 6]		8 810	15 240	5 538
InSn ₂ I ₅	[1]		8.813	15.23	5,538
KPb ₂ Br ₅	[2]	есть фаза <i>Р</i> 2₁/с	8.14	14.10	6.071
KPb ₂ Br ₅ -II	[2, 6]	ФВД	8,148	14,327	5,581
KSn ₂ Br ₅	[2]		8,376	14,443	
KSn₂Cl₅	[6]	есть фаза <i>Р</i> 2 ₁ /с	8,036	13,859	3,367
KSn₂Cl₅	[2]	есть фаза <i>Р</i> 2 ₁ /с	8,012	13,94	
KSn₂l₅	[2]		8,881	15,529	
NH₄Pb₂Br₅	[6}	β-фаза	8,435	14,47	5,367
NH ₄ Pb ₂ Br ₅	[10}		8,39	14,34	
RbPb₂Br₅	[31]		8,41	14,5	
RbPb₂Br₅	[6]		8,425	14,560	5,780
Tl₅Se₂Br	[6]	антиструктура	8,611	12,92	8,732
Tl₅Se₂Cl	[6]	антиструктура	8,565	12,733	8,641
Tl₅Se₂l	[1, 6]	антиструктура	8,663	13,463	8,589
TIPb₂Br₅	[6]	ФВД,	8,406	14,23	6,726
		есть фаза <i>Р</i> 2 ₁ /с			
TIPb ₂ I ₅	[2, 6]		8,902	15,132	6,943
TISn₂I₅	[6]		8,819	15,25	6,025

Таблица5

				-	
Атом	Параметры	$RbPb_2Br_5$	$InSn_2Br_5$	$InSn_2I_5$	ISe_2TI_5
	• •	[31]	[1]	[1]	[1]
	<i>a</i> (Å)	8,41	8,255	8,810	8,663
	<i>c</i> (Å)	14,5	14,438	15,240	13,463
	x/a	0	0	0	0
A (4 <i>a</i>)	y/b	0	0	0	0
	z/c	1/4	1/4	1/4	1/4
	x/a	0,158	0,1735	0,1405	0,162
B (8 <i>h</i>)	y/b	0,658	0,6735	0,6705	0,662
	z/c	0	0	0	0
	x/a	0	0	0	0
X1 (4c)	y/b	0	0	0	0
	z/c	0	0	0	0
	x/a	0,163	0,1600	0,1580	0,1437
X2 (16/)	y/b	0,663	0,6600	0,6580	0,6437
	z/c	0,365	0,3618	0,3592	0,3593

Структурные параметры некоторых соединений AB₂X₅ с пространственной группой *I*4/*mcm*, *Z* = 4

Прогноз новых соединений АВ₂Х₅

В рассмотренных структурах чётких геометрических границ между структурными типами не приходится ожидать, как это наблюдается, например, между октаэдрическими и тетраэдрическими фазами. Но некоторые закономерности в образовании их можно найти. Большинство соединений, которые мы будем рассматривать, имеют координации катионов больше шести. Это значит, что катионы в этих составах будут крупными и иметь радиусы больше 1 Å.

Галоидные соединения ABX₃ синтезируются из расплавов исходных компонент AX и BX₂. Структуры типа перовскита образуются чаще всего, если исходный компонент BX₂ имеет структуру типа CaF₂

(тип флюорита) [34]. Рассматриваемые кристаллы могут быть получены подобным образом по реакции AX + 2BX₂ = AB₂X₅. Поскольку в этих составах исходных реактивов ВХ₂ в два раза больше, чем при получении структуры перовскитов, то влияние ЭТОГО компонента будет определяющим. И наличие анионной трёхшапочной тригональной призмы вокруг катионов в кристаллических решётках исходных фаз типов PbCl₂, а в составах A_2BX_5 и типов UCl₃, PuBr₃ можно считать важным условием для образования структур типов: TIPb₂Cl₅, K₂PrCl₅, Y₂HfS₅.

Структуры галоидных соединений AB₂X₅ представлены в табл. 6, обозначенные буквенными символами в зависимости от ассортимента катионов в исходных составах АХ и ВХ₂. В табл. 6 катионы В расположены в первой горизонтальной строке, разбиты на группы по типам внешних электронных оболочек, а в пределах группы – по мере увеличения радиусов. Одновалентные катионы расположены в левом столбце по мере уменьшения радиусов сверху вниз. Каждая клеточка на пересечении строки (катион А) и столбца (катион В) соответствует составу соединения AB₂X₅. По наличию известных структур на такой схеме выделить области образования можно моноклинных И тетрагональных фаз.

Таблица6.

Симметрия фаз в галоидных составах AB₂X₅.

Обозначения фаз: *с* – кубическая, *t* – тетрагональная, *г* – ромбическая, *m* – моноклинная.

Обозначения структур	<i>t</i> 1	<i>m</i> 1
Пространственная группа	I4/mcm	<i>P</i> 2 ₁ / <i>c</i>
Тип структуры	(RbPb ₂ Br ₅)	(TIPb ₂ Cl ₅)

Вероятные области образования фаз с КЧ > 6

Х	A ⁺ \B ²⁺	Yb	Tm	Dy	Eu	Sm	Nd	Sn	Pb	Sr	Ва	
Л	Cs							С				Cs
0	Rb				<i>m</i> 1	<i>m</i> 1			<i>m</i> 1/r	<i>m</i> 1		Rb
Ρ	TI								<i>m</i> 1	<i>m</i> 1		TI
И	NH ₄								<i>m</i> 1	<i>m</i> 1		NH_4
Д	K							<i>t</i> 1/ <i>m</i> 1	<i>m</i> 1	<i>m</i> 1		K
Ы	In							<i>m</i> 1				In
Б	A⁺\B ²⁺	Yb	Tm	Dy	Eu	Sm	Nd	Sn	Pb	Sr	Ba	

Ρ	Cs				С	<i>t</i> 1			Cs
0	Rb					<i>t</i> 1	<i>m</i> 1	<i>m</i> 1	Rb
Μ	TI					<i>t</i> 1/ <i>m</i> 1			ΤI
И	NH_4					<i>m</i> 1			NH_4
Д	K				<i>t</i> 1	<i>t</i> 1/ <i>m</i> 1			Κ
Ы	In				<i>t</i> 1	<i>m</i> 1			In

Таблица6 (окончание)

	A ⁺ \B ²⁺	Yb	Tm	Dy	Eu	Sm	Nd	Sn	Pb	Sr	Ba	
И	Cs				<i>m</i> 1					<i>m</i> 1		Cs
0	Rb				<i>m</i> 1	<i>m</i> 1	<i>m</i> 1				<i>m</i> 1	Rb
Д	ΤI							<i>t</i> 1	<i>t</i> 1			TI
И	NH_4											NH_4
Д	K				<i>m</i> 1	<i>m</i> 1		<i>t</i> 1	?	<i>m</i> 1	<i>m</i> 1	Κ
Ы	In							<i>t</i> 1	<i>t</i> 1	<i>m</i> 1		In

Поскольку рассматриваемые структуры имеют высокие координационные числа катионов и образующие их атомы должны быть крупными (> 1Å), то составы с малыми атомами не анализировались. Не рассматривались составы с двухвалентными элементами: Be, Ni, Mg, Cu, Ge, Zn, Co, Fe, V, Cr, Mn, Ti, Cd Hg, Ca. Соединения AB₂X₅ с этими элементами могут образовываться, но структуры их будут другими. Одновалентные атомы: Ag, Na, Li и фтор тоже были исключены из-за малых размеров ионов.

Из табл. 6 видно, что, в пределах выделенных областей существования структур, вероятен синтез более 60 новых соединений с моноклинной структурой типа TIPb₂Cl₅. Но среди иодидов моноклинных соединений AB₂I₅ с B = Pb, Sn неизвестно, см. табл. 4.

Тетрагональные фазы типа RbPb₂Br₅ среди синтезированных соединений известны только с катионами B = Pb²⁺ и Sn²⁺. Этому можно дать объяснение. Анализ напряжённостей в связях катион-анион показывает, что катион B в тетрагональной решётке должен быть поляризованным. Этому условию хорошо удовлетворяют катионы Pb и Sn, а в иодидах с этими металлами взаимодействие, видимо, облегчается тоже из-за способности иода к сильной поляризации. Значит в иодидах (см. табл. 6) составов NH₄Sn₂I₅, NH₄Pb₂I₅, RbSn₂I₅, RbPb₂I₅ вероятнее образование тетрагональной структуры, а не моноклинной. Новых соединений с тетрагональной структурой будет синтезировано немного.

При образовании KPb₂Cl₅ из KCI + 2PbCl₂, объём элементарной ячейки моноклинной фазы примерно равен объёму ячеек исходных компонент. Объём ячейки KPb₂Cl₅равен 876,27 Å³ при суммарном объёме исходных (KCI + 2PbCl₂) – 874,66 Å³. И наблюдается линейное изменение плотности полученных соединений в зависимости от молекулярного веса, см. рис. 3. Особенно это характерно для хлоридов и бромидов.

Предварительную величину плотности (ρ) можно оценить по формулам:

для хлоридов: ρ = 0,00745·M_{вес}, точность ±2 %;

для бромидов ρ = 0,00645·M_{вес}, точность ±2 %;

для иодидов ρ = 0,00435·M_{вес}, точность ±5 %.

Puc. 3. Плотность галоидных соединений AB₂X₅ с моноклинной структурой в зависимости от их молекулярного веса.

y = 1; 0 y = 3/4 y = 3/4 y = 3/4 y = 1/2 y = 1/2 y = 1/2 y = 1/4 y = 1/4 z = 1/4z = 1/4

Могут ли образовываться структуры АВ₂Х₅ на основе структурного типа анти-PbCl₂? Известны три антиструктуры Tl₅Se₂l, TI₅Se₂Br И TI₅Se₂CI с тетрагональными ячейками (14/mcm) [1, 6]. И видимо возможно образование таких кристаллов среди интерметаллических базе составов на некоторых соединений со структурами типа анти-PbCl₂ [5].

3.2 Составы А₂ВХ₅

Структуры типа K₂PrCl₅ и Y₂HfS₅ (*Pnma*, Z = 4)

Puc. 4. Структура К₂PrCl₅ в послойном изображении. (одна элементарная ячейка).

Структуры типа K_2PrCl_5 [6, 14] известны среди галогенидов, оксидов и сульфидов (тип Y_2HfS_5), табл. 7. Их можно считать родственными типу TIPb₂Cl₅, доказательство этого будет приведено позже. Координационная формула структуры [$K_2^{VIII}Pr^{VII}Cl_5$]. Полиэдры PrCl₇ образуют цепи вдоль оси *z* [13, 14].

Таблица7

Соединение	Литература	<i>a</i> , Å	b, Å	<i>c</i> , Å	Плотность (г/см ³)
Хлориды					
Cs ₂ CeCl ₅	[6]	13,71	9,177	8,511	3,617
Cs ₂ LaCl ₅	[6, 14]	13,749	9,237	8,531	3,568
Cs_2PrCl_5	[6]	13,68	9,117	8,494	3,661
In ₂ CeCl ₅	[6, 14]	12,806	8,901	8,119	3,926
In ₂ GdCl ₅	[6, 14]	12,788	8,654	8,166	4,146
In₂LaCl₅	[6, 14]	12,821	8,966	8,115	3,886
In ₂ NdCl ₅	[6, 14]	12,813	8,807	8,127	3,992
In₂PrCl₅	[6, 14]	12,814	8,848	8,114	3,955
In₂SmCl₅	[6, 14]	12,773	8,708	8,135	4,091
K_2CeCl_5	[6, 13]	12,717	8,815	7,995	2,932
K ₂ DyCl ₅	[6, 13]	12,608	8,565	7,910	3,250
K_2EuCl_5	[6, 13]	12,664	8,650	7,942	3,111
K_2GdCl_5	[6, 13]	12,651	8,626	7,935	3,166
K_2LaCl_5	[6, 13]	12,742	8,868	8,022	2,890
K_2NdCl_5	[6, 13]	12,707	8,741	7,969	2,999
K₂PrCl₅	[6, 14]	12,710	8,772	7,985	2,957
K₂SmCl₅	[6, 13]	12,676	8,676	7,946	3,085
K ₂ TbCl ₅	[6, 13]	12,627	8,592	7,925	3,201
K ₂ UCl ₅	[6]	12,75	8,834	8,007	3,633
K ₂ UCl ₅	[6]	12,72	8,806	7,995	3,659

Структуры соединений типа K_2 PrCl₅ (*Pnma*, *Z* = 4)

Na ₂ EuCl ₅	[6]	12.04	8.339	7.682	3.231
Na ₂ SmCl ₅	[6]	12.02	8.330	7.668	3.231
NH ₄) ₂ CeCl ₅	[6, 14]	13,097	8,925	8,196	2,451
NH ₄) ₂ EuCl ₅	[6, 14]	13,032	8,741	8,162	2,610
NH ₄) ₂ GdCl ₅	[6, 14]	13,032	8,718	8,167	2,653
NH ₄) ₂ LaCl ₅	[6, 14]	13,100	8,967	8,197	2,430
NH ₄) ₂ NdCl ₅	[6, 14]	13,074	8,833	8,172	2,517
NH ₄) ₂ PrCl ₅	[6, 14]	13,080	8,869	8,180	2,480
NH₄)₂SmCl₅	[6, 14]	13,048	8,767	8,164	2,587
Rb_2ErCl_5	[14]	14,666	9,513	7,274	
Na ₂ SmCl ₅ NH ₄) ₂ CeCl ₅ NH ₄) ₂ EuCl ₅ NH ₄) ₂ GdCl ₅ NH ₄) ₂ LaCl ₅ NH ₄) ₂ NdCl ₅ NH ₄) ₂ PrCl ₅ NH ₄) ₂ SmCl ₅ Rb ₂ ErCl ₅	[6] [6, 14] [6, 14] [6, 14] [6, 14] [6, 14] [6, 14] [6, 14] [14]	12,02 13,097 13,032 13,032 13,100 13,074 13,080 13,048 14,666	8,330 8,925 8,741 8,718 8,967 8,833 8,869 8,767 9,513	7,668 8,196 8,162 8,167 8,197 8,197 8,172 8,180 8,164 7,274	3,23 2,45 2,61 2,65 2,43 2,51 2,48 2,58

Таблица7 (окончание)

Соединение	Литература	a, Å	b, Å	<i>c</i> , Å	Плотность
					(г/см ³)
Rb ₂ EuCl ₅	[6, 13]	13,066	8,222	8,158	3,533
Rb₂CeCl₅	[13]	13,122	8,985	8,195	4,650
Rb₂LaCl₅	[6, 13]	13,146	9,037	8,209	3,318
Rb₂NdCl₅	[6, 13]	13,111	8,912	8,175	3,424
Rb₂PrCl₅	[6, 14]	13,110	8,943	8,181	3,387
Rb₂PuCl₅	[6]	13,11	8,931	8,203	4,094
Rb₂SmCl₅	[13]	13,077	8,844	8,163	4,426
Rb₂UCl₅	[6]	13,11	8,978	8,187	4,038
Tl₂GaCl₅	[6]	12,84	8,979	8,108	5,148
Бромиды					
K ₂ CeBr ₅	[14]	13,336	9,226	8,437	
K_2GdBr_5	[6, 14]	13,233	9,111	8,374	4,177
K_2LaBr_5	[6, 14]	13,360	9,272	8,462	3,907
K_2NdBr_5	[6100]	13,318	9,159	8,416	2,999
K_2PrBr_5	[6, 14]	13,322	9,186	8,422	3,987
K_2SmBr_5	[6, 14]	13,266	9,156	8,398	4,090
K_2UBr_5	[6]	13,32	9,214	8,433	4,590
Rb ₂ CeBr ₅	[6, 14]	13,669	9,403	8,615	4,262
Rb_2LaBr_5	[6, 14]	13,690	9,446	8,621	4,226
Rb_2NdBr_5	[6100]	13,642	9,326	8,592	3,424
Rb₂PrBr₅	[6100]	13,658	9,356	8,595	3,387
Rb_2SmBr_5	[6, 14]	13,610	9,270	8,575	4,426
Rb_2UBr_5	[6]	13,66	9,390	8,604	4,862
Иодиды					
K ₂ Cel ₅	[6, 14]	14,313	9,879	9,123	4,391
K₂Lal₅	[6, 14]	14,332	9,912	9,132	4,360
K₂NdI₅	[6, 14]	14,271	9,830	9,111	4,453

K_2Prl_5	[6, 14]	14,289	9,827	9,119	4,428
Rb_2Cel_5	[6, 14]	14,542	10,039	9,253	4,650
Rb_2Lal_5	[6, 14]	14,586	10,094	9,272	4,595
Rb_2NdI_5	[14]	14,522	9,984	9,243	3,424
Rb_2Prl_5	[5725,6100]	14,526	10,005	9,243	4,679
Rb_2UI_5	[6]	14,54	10,02	9,249	5,138

В сульфидах и селенидах структуры, подобные K_2PrCl_5 , обозначаются по разному: Y_2HfS_5 , U_3S_5 , U_3Se_5 и анти- Rh_5Ge_3 . Мы будем придерживаться первого варианта. Структура Y_2HfS_5 (*Pnma*, *Z* = 4) представляет собой упорядоченный тип U_3Se_5 [7]. Координационная формула этого структурного типа: $[Y_2^{VIII}Hf^{VII}S_5]$ Сера в окружении имеет по 4 и 5 катионов [14] (табл. 8).

Puc. 5. Структура Y₂HfS₅ в послойном изображении. Представлена одна элементарная ячейка.

Таблица8.

Соединение	Литература	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	Плотность (г/см ³)
A ₂ BS ₅					
Ce ₂ HfS ₅	[6]	11,46	7,361	8,014	6,078
Dy_2HfS_5	[6]	11,40	7,221	7,716	6,938
Dy_2ZrS_5	[6]	11,47	7,184	7,744	6,001
Er_2ZrS_5	[6]	11,38	7,156	7,667	6,230
Gd_2HfS_5	[6]	11,41	7,239	7,822	6,712
Ho_2HfS_5	[6]	11,38	7,195	7,662	7,077

Структуры типа Y_2 HfS₅ (*Pnma*, *Z* = 4)

La_2HfS_5	[6]	11,51	7,368	8,054	5,995
La_2ThS_5	[6, 7]	12,081	8,371	7,607	5,796
La_2US_5	[6]	11,94	8,26	7,56	6,023
La_2ZrS_5	[6]	11,54	7,402	8,202	5,016
Nd_2HfS_5	[6]	11,40	7,325	7,899	6,315
Pr_2HfS_5	[6]	11,45	7,330	7,953	6,174
Sm_2HfS_5	[6]	11,38	7,274	7,889	6,505
Sm_2US_5	[6]	11,80	8,04	7,42	6,597

Таблица8 (окончание)

Соединение	Литература	<i>a</i> , Å	b, Å	<i>c</i> , Å	Плотность (г/см ³)
Sm₂ZrS₅	[6]	11,49	7,263	7,873	5,583
Tb_2HfS_5	[6]	11,41	7,229	7,776	6,798
Tb_2ZrS_5	[6]	11,47	7,217	7,757	5,887
Y_2HfS_5	[7]	11,4585	7,7215	7,2207	5,371
Y_2HfS_5	[6]	11,45	7,721	7,220	5,375
Y_2ZrS_5	[6]	11,49	7,233	7,745	4,430
A ₂ BSe ₅					
Gd ₂ ZrSe ₅	[6, 7]	12,064	8,138	7,603	7,124
La₂ThSe₅	[7]	12,562	8,648	7,937	6,968

Структуры типа K₂SmF₅ (*Pna*2₁, *Z* = 4)

Соединений со структурой типа K₂SmF₅ известно мало (см. табл. 9). Элементарная ячейка структуры в послойном изображении приведена на рис. 6.

Рис 6. Структура K₂SmF₅.

Координационная формула структур $[A_2^{VIII \div IX} B^{VII} X_5]$. По строению слоёв при *z* = 1/4 и *z* = 3/4 их можно считать родственными типу TIPb₂Cl₅.

20

Структуры типа $K_2 SmF_5$ (*Pna*2₁, *Z* = 4)

Соединение	Литература	<i>a</i> , Å	b, Å	<i>c</i> , Å	Плотность (г/см ³)
K ₂ DyF ₅	[6]	10,76	6,597	7,300	
K_2GdF_5	[6]	10,82	6,625	7,389	4,142
K_2SmF_5	[30]	10,80	6,62	7,51	
Rb_2ErF_5	[6]	11,27	6,825	7,392	5,060

Закономерности строения структур

Несколько трихлоридов И трибромидов кристаллизуются В гексагональном структурном типе UCl₃ (рис. слева). Здесь имеет место своеобразная девятерная координация подобно тому, как в решётке PbCl₂: вокруг катиона шесть располагается анионов В вершинах тригональной призмы, а

снаружи против середин граней располагаются ещё три катиона. Этот структурный тип был открыт первоначально на Y(OH)₃ [32].

Все известные трибромиды и трииодиды лантанидов и актинидов кристаллизуются в ромбическом структурном типе PuBr₃ (рис. слева). Координация плутония равна восьми – неправильный девятивершинник. У хлоридов этот структурный тип известен только для TbCl₃.

При прогнозе новых соединений учитывалась наследственность от этих трёх структур-предшественниц.

Структуры, содержащие октаэдры

Основное условие для образования анионного октаэдра – это соотношение радиусов катионов (R_B) и анионов (R_X): $R_B = (0,41 \div 0,73)R_X$.

В соединениях ABCX₅ есть небольшое количество октаэдрических структур. В них октаэдры объединены в одномерные цепочки. Так ряд фторидов составов A_2BF_5 образуют такие структуры и некоторые их гидраты (A = Na, K, NH₄, TI, Rb, Cs; B³⁺ = AI, Mn, Fe). Часть из них представлена на рис. 7-9 и в табл. 10.

Для образования цепочек из октаэдров в составе соединения на октаэдрический элемент структуры в среднем должно приходиться пять анионов. Этому условию хорошо соответствует состав ABCX₅.

Puc. 7. Структура Rb₂MnF₅. *Puc.* 8. Структура (NH₄)₂MnF₅ [5427]

Наиболее простой пример: структуры Rb_2MnF_5 и (NH_4)₂ MnF_5 (рис. 7 и 8). Во второй структуре октаэдры в цепочке немного повёрнуты из-за смещения апикальных анионов в плоскости *x* – *z*.

Из рис. 8 видно, что структура (NH₄)₂MnF₅ немного сжата по оси *у*. А это значит, что в неё можно ввести более крупный катион А, чтобы выправить цепочку октаэдров.

Рис 9. Структура Na₂MnF₅

В структуре Na₂MnF₅ моноклинная, цепочки октаэдров деформированы.

Многие кристаллогидраты A₂BF₅·H₂O тоже образуют структуры с октаэдрическими цепочками, см. табл. 10.

Таблица 10

Структуры	фторидов	A_2BF_5
-----------	----------	-----------

Соединение	Литература	Простр. группа	<i>a</i> , Å	b, Å	<i>c</i> , Å	β град.	Z
Rb_2MnF_5	[15]	P4/mmm	6,0971		4,1331		1
Rb_2MnF_5	[6]	P4/m	6,103		4,14		1
(NH₄)₂MnF₅	[22]	Pnma	6,20	7,94	10,72		4
β-(NH ₄) ₂ FeF ₅	[6]	Pnma	6,337	7,616	11,03		4
TI_2AIF_5	[6]	Стст	10,08	8,25	7,47		4
Na_2MnF_5	[11]	P2 ₁ /c	7,719	5,236	10,862	108,99	4
Rb₂MnF₅·H₂O	[6]	Стст	9,383	8,214	8,348		4
$Rb_2MnF_5 H_2O$	[6]	Стст	9,407	8,202	8,344		4
Cs₂MnF₅·H₂O	[8]	Cmmm	9,727	8,686	4,254		2
$K_2AIF_5 H_2O$	[6]	Стст	9,21	8,13	7,46		4
$K_2MnF_5 H_2O$	[4]	P2 ₁ /m	6,04	8,20	5,94	96,5	4

Структуры типа Cs₂DyCl₅ (*Pbnm*, *Z* = 4) демонстрируют другой вариант объединения октаэдров в цепочки.

Рис. 10. Октаэдрический фрагмент в структуре Cs₂DyCl₅ [14].

Cs₂DyCl₅ имеет координационную формулу: $[Cs^{X}Cs^{XI}Dy^{VI}CI_{5}].$ Вокруг атомов хлора располагаются по 5 и по 6 катионов. Октаэдры DyCl₆ образуют зигзагообразные цепочки вдоль оси z, соединяясь между собой одной вершиной плоскости [12, 14]. базисной Моноклинные соединения DyCl₃, YCl₃, и др. относятся К структурному типу AICI₃. В основе решётки лежит плотнейшая деформированная кубическая

упаковка ионов хлора, в которой ионы Al³⁺ в октаэдрах расположены попарно [32]. Эта «попарность» в расположении октаэдров наследуется структурным типом Cs₂DyCl₅ при образовании октаэдрических цепочек [12].

Таблица 11

Литература	<i>a</i> , Å	<i>b</i> , Å	с, Å	Плотность (г/см ³)
[6, 14]	15,233	9,549	7,457	3,688
[12]	15,231	9,549	7,498	
[6, 14]	15,191	9,499	7,442	3,775
[6, 14]	15,202	9,515	7,454	3,745
[6, 14]	15,142	9,448	7,385	3,886
[14]	15,125	9,419	7,367	
[6, 14]	15,177	9,481	7,418	3,810
[6, 14]	15,147	9,456	7,408	3,857
[6, 14]	15,226	9,533	7,469	3,259
[14]	14,938	9,510	7,433	
[14]	14,913	9,468	7,378	
	Литература [6, 14] [12] [6, 14] [6, 14] [6, 14] [6, 14] [6, 14] [6, 14] [6, 14] [14] [14]	Литератураa, Å[6, 14]15,233[12]15,231[6, 14]15,191[6, 14]15,191[6, 14]15,202[6, 14]15,142[6, 14]15,125[6, 14]15,177[6, 14]15,147[6, 14]15,226[14]14,938[14]14,913	Литератураa, Åb, Å[6, 14]15,2339,549[12]15,2319,549[6, 14]15,1919,499[6, 14]15,2029,515[6, 14]15,1429,448[14]15,1259,419[6, 14]15,1779,481[6, 14]15,1479,456[6, 14]15,2269,533[14]14,9389,510[14]14,9139,468	Литератураa, Åb, Åc, Å[6, 14]15,2339,5497,457[12]15,2319,5497,498[6, 14]15,1919,4997,442[6, 14]15,2029,5157,454[6, 14]15,1429,4487,385[14]15,1259,4197,367[6, 14]15,1779,4817,418[6, 14]15,1479,4567,408[6, 14]15,2269,5337,469[14]14,9389,5107,433[14]14,9139,4687,378

Соединения типа Cs_2DyCl_5 (*Pbnm*, *Z* = 4)

CsRbHoCl₅	[14]	14,933	9,491	7,404	
CsRbLuCl₅	[14]	14,872	9,401	7,327	
CsRbTbCl₅	[14]	14,958	9,540	7,452	
CsRbTmCl₅	[14]	14,901	9,439	7,373	
CsRbYbCl₅	[14]	14,873	9,421	7,351	
CsRbYCl₅	[14]	14,939	9,507	7,406	
Rb_2ErCl_5	[14]	14,666	9,513	7,274	
Rb₂LuCl₅	[14]	14,609	9,398	7,246	
Rb₂TmCl₅	[14]	14,621	9,465	7,271	

Подобная упаковка анионных октаэдров реализуется в структуре типа $K_2VO_2F_3$ (*Pnma*, *Z* = 4). Кислороды и фторы упорядочены, образуют вдоль оси *у* цепи из октаэдров VO_2F_4 , соединённых через атомы фтора, рис. 11, [19]. Структуры такого типа известны и в некоторых оксидах.

Рис. 11. Октаэдры в структуре K₂VO₂F₃ [19].

Таблица 12

Структуры типа $K_2VO_2F_3$ (Z = 4)

Соединение	Пр. гр.	Литература	<i>a</i> , Å	b, Å	<i>c</i> , Å	Плотность (г/см ³)
$K_2VO_2F_3$	Pna2 ₁	[16]	7,360	11,390	5,648	3,060
$K_2VO_2F_3$	Pnam	[19]	7,379	11,413	5,640	3,05
Ba ₂ ReO ₅	Pnam	[6]	7,305	11,39	5,766	7,488

Ba_2WO_5	Pnam	[6]	7,406	11,47	5,731	7,340
Sr_2WO_5	Pnam	[6]	7,250	10,89	5,548	6,654
$Rb_2VO_2F_3$	r	[16]	7,63	11,76	5,90	3,90
$Cs_2VO_2F_3$	r	[16]	8,03	12,10	6,36	4,35

Монокристаллы с таким «одномерным» расположением катионов в октаэдрах должны быть интересны для исследователей. В структурах с октаэдрическими цепочками типов Cs₂DyCl₅, K₂VO₂F₃, и родственных им оксидных составов, матрица кристалла может быть образована как галогенами, так и кислородами. А может быть и смешанной кислородногалогенной. Это значит, что оптические свойства (диапазон прозрачности) таких материалов могут быть разными, а может их можно будет регулировать химическим составом кристаллов.

Прогноз новых соединений А₂ВХ₅

K₂PrCl₅ Известные типов Cs₂DyCl₅, K_2SmF_5 соединения представлены буквенными обозначениями в табл. 13, а соединения типа Y₂HfS₅ – в табл. 14. На основании известных данных ограничены наиболее (двойные линии) вероятные геометрические области образования Ha ЭТИХ структурных типов. основании такого предположения можно ожидать синтеза 116 новых соединений A₂BX₅ с перечисленными структурными типами.

Таблица 13

Структуры галогенидов составов А₂+В³⁺Х₅

Структуры: r1 – тип K₂PrCl₅, r5 – тип Cs₂DyCl₅, r3 – тип K₂SmF₅.

A ₂ ⁺ /B ³⁺	Υ	La	Lu	Yb	Tm	Er	Но	Dy	Tb	Gd	Tm	Sm	Pm	Nd	Pr	Ce
				Φ	Т	0	р	и	Д	ы						
Cs																
Rb						r3										

TI																
NH ₄																
K								r3		r3		r3				
In																
A_2^+/B^{3+}	Υ	La	Lu	Yb	Tm	Er	Ho	Dy	Tb	Gd	Eu	Sm	Pm	Nd	Pr	Ce
				Х	Л	0	р	И	Д	Ы						
Cs	r5	r1	r5	r5		r5	r5	r5			r5	r5			r3	r1
Rb		r1	r5		r5	r5					r1	r1		r1	r1	r1
TI																
NH ₄		r1								r1	r1	r1		r1	r1	r1
K		r1						r1	r1	r1	r1	r1		r1	r1	r1
In		r1								r1		r1		r1	r1	r1
Na											r1?					r1?
A2 ⁺ /B ³⁺	Y	La	Lu	Yb	Tm	Er	Но	Dy	Tb	Gd	Eu	Sm	Pm	Nd	Pr	Ce
				Б	р	0	М	И	Д	Ы						
Cs																
Rb		r1										r1		r1	r1	r1
TI																
NH ₄						i										
K																
		r1								r1		r1		r1	r1	r1
In		r1								r1		r1		r1	r1	r1
$\frac{\ln}{A_2^+/B^{3+}}$	Y	r1 La	Lu	Yb	Tm	Er	Но	Dy	Tb	r1 Gd	Eu	r1 Sm	Pm	r1 Nd	r1 Pr	r1 Ce
$\frac{\ln}{A_2^+/B^{3+}}$	Y	r1 La	Lu	Yb И	Tm	Er Д	Но	Dy д	Тb ы	r1 Gd	Eu	r1 Sm	Pm	r1 Nd	r1 Pr	r1 Ce
$ \frac{\ln}{A_2^+/B^{3+}} $ Cs	Y	r1 La	Lu	Yb И	Tm o	Er Д	Но	Dy д	Тb ы	r1 Gd	Eu	r1 Sm	Pm	r1 Nd	r1 Pr	r1 Ce
In A ₂ ⁺ /B ³⁺ Cs Rb	Y	r1 La r1	Lu	Yb И	Tm o	Er Д	Но	Dy Д	Тb ы	r1 Gd	Eu	r1 Sm	Pm	r1 Nd	r1 Pr r1	r1 Ce r1
In A ₂ ⁺ /B ³⁺ Cs Rb TI	Y	r1 La	Lu	Yb И	Tm o	Er Д	Нои	Dy д	Тb ы	r1 Gd	Eu	r1 Sm	Pm	r1 Nd	r1 Pr r1	r1 Ce r1
$ \begin{array}{c} \text{In} \\ A_2^+/B^{3+} \\ \hline \\ Cs \\ Rb \\ Tl \\ NH_4 \\ \hline \end{array} $	Y	r1 La r1	Lu	Yb И	Tm o	Er Д	Нои	Dy Д	Тb ы	r1 Gd	Eu	r1 Sm	Pm	r1 Nd	r1 Pr r1	r1 Ce r1
In A ₂ ⁺ /B ³⁺ Cs Rb Tl NH ₄ K	Y	r1 La r1 r1	Lu	Yb И	Tm o	Er Д	Нои	Dy д	Тb ы	r1 Gd	Eu	r1 Sm	Pm	r1 Nd r1 r1	r1 Pr r1 r1	r1 Ce r1 r1

Таблица 14

Структуры соединений $A_2^{3^+}B^{4^+}S_5$

Обозначения структур: r2 – Y₂HfS₅, r – ромбическая, m – моноклинная, обе без уточнения структурного типа. Рамками выделены наиболее вероятные геометрические области образования структур типа Y₂HfS₅.

A ³⁺ /B ⁴⁺	Si	Ti	Zr	Се	Th	Ge	Sn	Pb	Hf	Tb	Pr	U
TI												
In												
Ga												
La			r2			m	r		r2			r2
Y			r2						r2			
Sc												
Al												
Ce									r2			
Pr			r2									
Nd			r2									
Pm												
Sm			r2				r		r2			r2
Eu												
Gd									r2			
Tb			r2						r2			
Dy			r2						r2			
Ho									r2			
Er			r2									
Tm												
Yb												
Lu												

Закономерности

В завершение прогнозных оценок хочется обратить внимание на визуальное подобие трёх структурных типов: TIPb₂Cl₅, K₂PrCl₅, Y₂HfS₅, представленное на рис. 12. Если в кристаллах типа TIPb₂Cl₅ обнаружены интересные и полезные физические свойства, то возможно они проявятся и в кристаллах других структурных типов. При подобном геометрическом расположении катионов ассортимент их в составах может быть очень широким.

Puc. 12. Сопоставление структурных типов: TIPb₂Cl₅, K₂PrCl₅, Y₂HfS₅.

Выводы

Кристаллы галоидных перовскитов выращивались из расплава методом Бриджмена из шихты исходных компонент АХ и ВХ₂ составов, близких к эквимолярным [27, 28]. Больших проблем с выращиванием не было, сложности сопровождали процесс обезвоживания галогенидов ВХ₂. Качество исходного реактива ВХ₂ во многом определяло конечный результат процесса выращивания кристалла. В системе составов AB₂X₅, кристаллы могут быть получены из тех же исходных компонентов АХ и ВХ₂, но в другом молярном соотношении 1 : 2. Так что принципиальных затруднений при получении новых соединений как будто нет.

Есть соединение $RbSm^{2+}_{2}Cl_{5}$ с моноклинной структурой. И есть соединение $Cs_{2}Sm^{3+}Cl_{5}$ с ромбической структурой типа $K_{2}PrCl_{5}$, Значит возможны переходы при изменении валентности катиона В от состава $A^{+}B^{2+}_{2}X_{5}^{-}$ к $A_{2}^{+}B^{3+}X_{5}^{-}$. И структуры при этом получаются родственными.

Тип структуры	Известно соединений	Прогнозируется
TIPb ₂ Cl ₅	29	62
K_2PrCl_5	52	38
Y_2HfS_5	18	57
Cs_2DyCl_5	10	6
K_2SmF_5	4	24
$RbPb_2Br_5$	10	4
	123	191

Результаты прогноза:

Результаты прогноза показывают, что можно синтезировать в составах АВСХ₅ более 190 новых соединений. Это наиболее вероятные составы, синтезировать новых соединений можно значительно больше.

В угоду высокой симметрии кристаллической решётки или её некоторых структурных элементов многие структуры получаются рыхлыми, с образованием вакансий. Так в структуре флюорита (CaF₂, *Fm*3*m*) коэффициент упаковки *q* (отношение объёма ионов к объёму элементарной ячейки) равен 51 %, при 74 % для плотной упаковки шаров. В структуре есть пустота с кубической конфигурацией. Атомы (ионы) занимают примерно половину объёма элементарной ячейки. В структурах гагаринита (ABCX₆) *q* = 66–70 %.

В структурах типа TIPb₂Cl₅ (ABCX₅, $P2_1/c$) коэффициент упаковки изменяется от 68 до 71 % (для хлоридов) до 74 до 81 % (для иодидов), а у селенида PbU₂Se₅ q = 87,3 %. В тетрагональных фазах ABCX₅ (*I*4/*mcm*) q = 70 – 87 %.

В составах ABCX₅ нет возможности к образованию высокосимметричных структур. Чтобы сохраниться, они сразу получаются плотными.

В структурах, содержащих правильные координационные полиэдры при изменении термодинамических условий происходят структурные фазовые переходы с понижением симметрии. Но такие структуры пытаются сохранить, на сколько это бывает возможно, некоторые элементы исходных фаз высокой симметрии. Так В структурах с октаэдрами, при дефиците анионов могут образовываться анионные вакансии и октаэдры трансформируются в пирамиды, квадраты и даже в гантели. Анионные тетраэдры могут преобразоваться

30

в треугольники. Структуры стремятся сохранить высокую симметрию, оставляя в узлах кристаллической решётки вместо атомов вакансии.

В составах ABCX₅ на базе трехшапочных тригональных призм вакансий не образуется. Структуры получаются искажёнными и плотными. Если бы структура потеряла все три шапочки, то тогда вокруг катиона мог бы образоваться анионная призма с координационным числом шесть. Но такая ситуация маловероятна. При КЧ = 6 выгоднее октаэдр. Но это будут уже совсем другие соединения и структуры.

Таким образом, можно сделать вывод, что в кристаллах составов АВСХ₅ структурных фазовых переходов будет мало. Они как бы сразу находятся в низкотемпературной фазе.

Список литературы

- 1. <u>Beck H.P.</u> // Z. anorg. allg. Chem. 1986. Bd. 536. S. 45–52.
- Beck H.P., Clicque G., Nau H. // Z. anorg. allg. Chem. 1986. Bd. 536.
 S. 35–44.
- 3. <u>Bukovec P., Kaucic V.</u> // Acta Cryst. 1978. V. B34, № 11. P. 3339– 3341.
- 4. <u>Edwards A.J.</u> // J. Chem. Soc. A. 1971. N 16. P. 2653–2655.
- 5. <u>Jansen P.W.J.</u> // Rec. Trav. Chim. Pays-Bas. 1968. V. 87. P. 1021– 1024.
- <u>JCPDS</u> International Centre for Diffraction Data. PCPDFWIN. 1997.
 v. 1.30.
- 7. <u>Jeitschko W., Donohue P.C. //</u> Acta Cryst. 1975. V. B31. P. 1890– 1895.
- Kaucic V., Bukovec P. // Acta Cryst. 1978. V. B34, № 11. P. 3337– 3339.
- 9. <u>Keller H.L.</u> // Z. Naturforschung. 1976. Bd. 31b, № 6. S. 885.
- 10. <u>Landolt-Börnstein.</u> Atom- und Molekular-physik. 4 Teil, Kristalle, Berlin-Göttingen-Heidelberg, Springer-Verlag. 1955. 1008 s.
- 11. <u>Massa W.</u> // Acta Cryst. 1986. V. C42. P. 644–647.
- 12. <u>Meyer G.</u> // Z. anorg. allg. Chem. 1980. Bd. 469. S. 149–158.
- 13. <u>Meyer G., Hüttl E. //</u> Z. anorg. allg. Chem. 1983. Bd. 497. S. 191–198.
- 14. Meyer G., Soose J., Moritz A., Vitt V., Holljes T.H. // Z. anorg. allg.

Chem. 1985. Bd. 521. S. 161–172.

- 15. <u>Muñez P.</u> // Mater. Res. Bull. 1987. V. 22 P. 661.
- Pausewang G., Dehnicke K. // Z. anorg. allg. Chem. 1969. Bd. 369, № 3-6. S. 265–277.
- Potel M., Brochu R., Padiou J. // Mater. Res. Bull. 1975. V. 10, № 3.
 P. 205–209.
- <u>Ras F.G., Ijdo D.J.W., Verschoor G.C. // Acta Cryst.</u> 1977. V. B33.
 P. 259–260.
- 19. <u>Ryan R.R., Mastin S.H., Reisfeld M.J.</u> // Acta Cryst. 1971. V. B27, № 6. P. 1270–1274.
- 20. <u>Sahl R., Zemann J.</u> // Naturwisswnschaften. 1961. Bd. 48, № 20. S. 641–642.
- 21. <u>Schleid T., Meyer G.</u> // Z. anorg. allg. Chem. 1987. Bd. 553. S. 231– 238.
- 22. <u>Sears D.R., Hoard J.L.</u> // J. Chem. Phys. 1969. V. 50, № 3. P. 1066– 1071.
- 23. <u>Shannon R.D.</u> // Acta Cryst. 1946. V. A32, № 6. P. 751–767.
- 24. <u>Александров К.С., Безносиков Б.В.</u> Перовскитоподобные кристаллы. Новосибирск. Наука. Сибирское предприятие РАН. 1997.– 216 с.
- 25. <u>Александров К.С., Безносиков Б.В.</u> Перовскиты. Настоящее и будущее. Новосибирск: Изд-во СО РАН. 2004.–231 с.
- 26. <u>Александров К.С., Безносиков Б.В.</u> Структурные фазовые переходы в кристаллах. Новосибирск: Наука. Сибирская издательская фирма, 1993.–287 с.
- <u>Безносиков Б.В.</u> Синтез кристаллов и исследование фазовых переходов в галоидных соединениях ABX₃ со структурой типа перовскита. (канд. дисс.) 1977. Красноярск. Институт физики CO AH CCCP. 150 с.
- 28. <u>Безносиков Б.В., Безносикова Н.В.</u> // Кристаллография. 1968. Т. 13, № 1. С. 188–189.
- 29. <u>Бокий Г.Б.</u> Введение в кристаллохимию. М.: Изд-во МГУ. 1954.– 492 с.
- 30. <u>Бочкова Р.И., Сафьянов Ю.Н., Кузьмин Э.А., Белов Н.В.</u> // ДАН СССР. 1973. Т. 212, № 2. С. 357–359.

- Вировец А.В., Наумов Д.Ю., Меркулов А.А., Исаенко Л.И., Пашков <u>В.М.</u> / Труды 5 Международной конф. «Кристаллы, рост, свойства, реальная структура, применение». Александров, 10–14 сентября 2001. Т. 1. Александров. ВНИИСИМС. 2001. С. 83–86.
- 32. <u>Нараи Сабо И.</u> Неорганическая кристаллохимия. Будапешт: Издво АН Венгрии. 1969.–504 с.
- Петрова М.А., Романов Д.П., Рахманкулов Р.М., Новикова А.С., Гребенщиков Р.Г. // Журнал неорган. химии. 1986. Т. 31, № 5. С. 1334–1335.
- 34. <u>Фазовые переходы в кристаллах галоидных соединений ABX₃</u> / К.С. Александров, А.Т. Анистратов, Б.В. Безносиков, Н.В. Федосеева. Новосибирск: Наука.–Сиб. отд-ние, 1981.–264 с.

Ответственный за выпуск Б.В. Безносиков

Подписано в печать 18.01.2005. Гарнитура "Arial". Уч. изд. л. 2,0. Заказ № 2. Тираж 50 экз. Отпечатано в типографии Института физики СО РАН 660036. Красноярск. Академгородок.