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Введение

Исследование квантового транспорта частиц в низкоразмерных системах
занимает центральное место в современной физике конденсированного состо­
яния вещества и квантовой оптике. Решеточные модели, такие как модель
Бозе—Хаббарда, являются ключевыми теоретическими моделями для изучения
коллективных явлений — сверхтекучести, бозе-эйнштейновской конденсации и
фазовых переходов [1]. Прогресс в экспериментах с ультрахолодными атома­
ми в оптических решетках [2] позволил не только реализовать такие модели,
но и управлять свойствами системы, такими как туннелирование, межча­
стичное взаимодействие и диссипация, с высокой точностью, открыв новые
возможности для исследования неравновесной квантовой динамики. Одна­
ко некоторые фундаментальные вопросы о механизмах переноса в условиях
сильных взаимодействий, декогеренции или диссипации остаются открытыми,
требуя разработки новых теоретических подходов.

Для решения указанных проблем ключевым является анализ открытых
квантовых систем. В отличие от замкнутых систем, они учитывают взаимодей­
ствие с окружением, что приводит к диссипации и установлению стационарных
состояний [3]. Особый класс таких систем — гранично-возбуждаемые системы
(англ. boundary-driven systems) [4] — предполагает, что резервуары подклю­
чены к краям системы, что в свою очередь приводит к появлению тока
частиц. Моделирование таких систем часто опирается на основное кинетическое
уравнение в форме Линдблада, также известное как уравнение Горини-Косса­
ковского-Сударшана-Линдблада, которое описывает диссипативную динамику
через операторы релаксации [5; 6].

Развитие теории квантового транспорта тесно переплетается с активно
развивающейся областью, называемой атомтроникой, — аналогом электро­
ники, в котором носителями информации и тока выступают ультрахолодные
атомы в оптических решетках [7; 8]. В таких системах управление атомными
потоками, аналогичное управлению электронами в полупроводниках, требу­
ет глубокого понимания квантовых механизмов транспорта. Перспективным
направлением является также использование нелинейных эффектов для созда­
ния логических элементов, чувствительных к изменению внешних параметров.
Таким образом, изучение квантового транспорта в одномерных решетках не
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только расширяет фундаментальные знания, но и закладывает основу для тех­
нологических прорывов инженерии квантовых систем.

Целью данной работы является теоретическое исследование квантового
транспорта ультрахолодных бозе-атомов в одномерных дискретных системах —
одномерных цепочках Бозе—Хаббарда, находящихся в контакте с резервуарами.

Для достижения поставленной цели необходимо было решить следующие
задачи:

1. Исследовать стационарный ток в открытой одномерной цепочке Бозе—
Хаббарда под влиянием межчастичного взаимодействия.

2. Исследовать квантовый транспорт в ромбической цепочке под действи­
ем синтетического магнитного поля, проанализировать интерференци­
онные эффекты и изучить влияние межчастичного взаимодействия.

3. Разработать немарковскую модель открытой системы Бозе—Хаббарда с
контактами, исследовать явление резонансного туннелирования бозон­
ных частиц и проанализировать воздействие на него межчастичного
взаимодействия.

4. Исследовать связь между статистическими свойствами спектра нерав­
новесной матрицы плотности и режимами квантового транспорта.

Научная новизна:
1. Впервые в рамках псевдоклассического подхода проведено комплексное

исследование перехода от баллистического к диффузионному транспор­
ту в открытой цепочке Бозе—Хаббарда, обусловленного разрушением
коллективных мод при включении межчастичного взаимодействия.

2. Впервые для открытой ромбической цепочки под действием синтетиче­
ского магнитного поля систематически исследовано взаимное влияние
интерференционных эффектов и межчастичного взаимодействия на
транспорт, и показано, что взаимодействие разрушает интерференци­
онную блокировку тока, переводя систему в диффузионный режим.

3. Впервые обнаружено и систематически исследовано явление резонанс­
ного туннелирования для бозонных носителей в немарковской модели
с кольцевыми контактами и показано его разрушение под влиянием
межчастичного взаимодействия.

4. Впервые выполнено исследование связи между квантовым хаосом и
транспортом в открытой бозонной системе. Показано, что подавле­
ние стационарного тока при увеличении взаимодействия коррелирует
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с переходом статистики спектра матрицы плотности от распределения
Пуассона к распределению Вингнера-Дайсона.

Практическая значимость Результаты работы имеют практическую
значимость для экспериментальной физики ультрахолодных атомов, мезоско­
пических систем, квантовой оптики и атомтроники. Полученные теоретические
предсказания и построенные модели могут быть использованы для интер­
претации и планирования экспериментов в области квантового транспорта в
оптических решетках, фотонных кристаллах и сверхпроводящих цепях. В част­
ности, результаты по управлению током с помощью синтетического магнитного
поля и межчастичного взаимодействия, а также результаты по резонансному
туннелированию, открывают пути для создания новых элементов квантовых
устройств на основе бозонных систем.

Методология и методы исследования. В основе диссертации лежит
решение основного кинетического уравнения в форме Линдблада. Это урав­
нение решалось численно и аналитически: в случае наличия взаимодействия
— с использованием псевдоклассического приближения, основанного на усе­
ченной функции Вигнера, а в случае отсутствия взаимодействия — сводилось
к уравнению для одночастичной матрицы плотности. В главе 5 основное ки­
нетическое уравнение решалось численно без использования приближений. В
качестве численного метода использовался метод Рунге—Кутты четвёртого по­
рядка, реализованный в среде MATLAB.

Основные положения, выносимые на защиту:
1. В открытой цепочке Бозе—Хаббарда межчастичное взаимодействие

вызывает кроссовер от баллистического к диффузионному режиму
транспорта, который обусловлен разрушением коллективных мод.

2. В ромбической цепочке под действием магнитного поля межчастичное
взаимодействие разрушает интерференционную блокировку транспор­
та при фазе Пайерлса Φ = π, что приводит к появлению конечного тока
в области параметров, в которой для невзаимодействующих частиц ток
отсутствует.

3. В немарковской модели с контактами при низких температурах на­
блюдается резонансное туннелирование бозонных частиц. Вместе с тем
межчастичное взаимодействие вызывает сдвиг и уширение резонанс­
ных пиков, вплоть до полного уничтожения резонансной картины.
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4. Подавление тока через одномерную цепочку при увеличении межча­
стичного взаимодействия является следствием перехода от регулярной
динамики к квантовому хаосу, что проявляется в изменении стати­
стики спектра неравновесной матрицы плотности от распределения
Пуассона к распределению Вигнера—Дайсона; в пределе сильного вза­
имодействия наблюдается фермионизация бозонов и восстановление
регулярной динамики.

Достоверность полученных результатов обусловлена непротиворечиво­
стью и обоснованностью используемых моделей, корректностью примененных
приближений и методов, внутренней согласованностью результатов, получен­
ных различными методами и физической интерпретируемостью полученных
данных.

Апробация работы. Основные результаты работы докладывались на
международных и всероссийских конференциях: «Всероссийская научная кон­
ференция „Физика ультрахолодных атомов – 2020“» (г. Новосибирск, Россия,
2020 г.); «METANANO Summer School on Photonics of 2D materials» (г. Санкт­
Петербург, Россия, 2021 г.); «Конкурс-конференция молодых учёных, аспиран­
тов и студентов ФИЦ КНЦ СО РАН по секции „Физика“» (г. Красноярск,
Россия, 2021, 2023 гг.); «17-я и 18-я Всероссийская научная конференция
с международным участием „Физика ультрахолодных атомов “» (г. Новоси­
бирск, Россия, 2023, 2024 гг.); «Dynamics Days Asia Pacific 13» (г. Киото,
Япония, 2024 г.); «Long-term Workshop on Frontiers in Non-equilibrium Physics
2024» (г. Киото, Япония, 2024 г.); «International Workshop Quantum Computing,
Complexity, and Control (QCCC25)» (г. Тэджон, Республика Корея, 2025 г.);
«Всероссийская научной конференция с международным участием „Невская
фотоника - 2025“» (г. Санкт-Петербург, 2025г.)

Личный вклад. Постановка задач и интерпретация полученных резуль­
татов выполнена совместно с научным руководителем д.ф.-м.н. А. Р. Колов­
ским. Все представленные в диссертации оригинальные результаты получены
лично автором либо при его непосредственном участии. Реализация алгорит­
мов расчета и интерпретация части результатов была осуществлена совместно
с к.ф.-м.н. Д. Н. Максимовым и А. А. Бычек.

Публикации. Основные результаты по теме диссертации изложены
в 9 печатных изданиях, 4 из которых изданы в журналах, рекомендованных
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ВАК, 4 — в периодических научных журналах, индексируемых Web of Science
и Scopus, 5 — в тезисах докладов.

Объем и структура работы. Диссертация состоит из введения, 5 глав и
заключения. Полный объём диссертации составляет 97 страниц, включая 25 ри­
сунков. Список литературы содержит 145 наименований.
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Глава 1. Обзор литературы. Квантовый транспорт и теоретические
подходы к задаче о транспорте

Проблема квантового транспорта частиц через периодические структу­
ры возникла в первой половине XX столетия на ранних этапах становления
квантовой механики. Первыми работами, связанными с квантовым транспор­
том, можно считать труды посвященные квантово-механическому описанию
электронной структуры кристаллов, основное внимание в которых уделялось
описанию электронов в условиях кристаллического поля. Одной из первых ра­
бот в данной области стал фундаментальный труд Ф. Блоха [9], в котором была
сформулирована теорема о виде волновых функций электронов в периодиче­
ском потенциале и заложены основы зонной теории твёрдого тела. Хотя сам
Блох не рассматривал динамику электронов во внешнем поле, из его теории
позже следовало существование осцилляций Блоха — периодического движе­
ния электронного волнового пакета в постоянном электрическом поле. Первое
последовательное предсказание данного эффекта и анализ его устойчивости бы­
ли выполнены К. Ценером в 1934 году [10]. Осцилляции Блоха представляют
собой чисто квантовое явление, поскольку в классическом случае частицы в
постоянном поле испытывали бы неограниченное ускорение. Именно этот эф­
фект стал прообразом для изучения квантового транспорта в периодических
структурах. Модель сильной связи (tight-binding), формализованная Слэтером
и Костером [11], предоставила математический аппарат для описания туннели­
рования между локализованными состояниями — базовый механизм транспорта
в дискретных системах, таких как модели Хаббарда [12—14]. Теория квантово­
го транспорта исследует перенос физических величин — энергии, заряда или
частиц — в мезоскопических системах при низких температурах, где доминиру­
ющую роль играют квантовомеханические явления [15—17]. В таких условиях
классическое описание носителей тока становится неприменимым, что требует
строгого квантовомеханического формализма для анализа как стационарных,
так и динамических режимов. Классическим примером служит электронный
транспорт через наноструктуры, связывающие два электронных резервуара
[18—20].

Квантовый транспорт в настоящее время является центральной темой
в ряде передовых областей физики. В физике твёрдого тела его изучают на
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примере электронного переноса в мезоскопических и наноструктурированных
системах [15—17]. Аналогичные принципы находят применение в фотонике
для управления световыми потоками в метаматериалах и оптических решёт­
ках [21—25]. Спинтроника расширяет область исследований, вовлекая спиновые
степени свободы [26], а сверхпроводящие квантовые цепочки на основе транс­
монов позволяют исследовать коллективные квантовые явления и когерентный
перенос энергии [27—29].

Особую роль играет физика ультрахолодных атомов, предлагающая почти
идеально контролируемую систему для изучения квантового транспорта [4; 30].
Именно на ее основе сформировалось направление атомтроники [7; 8] — анало­
га электроники, роль носителей в которой играют электронейтральные атомы.
Атомтроника открывает уникальные перспективы для создания программи­
руемых квантовых симуляторов, высокочувствительных интерферометров и
прототипов квантовых логических устройств, объединяя идеи из других раз­
делов физики.

Исследования квантового транспорта тесно связаны с быстро развива­
ющимся направлением диссипативной инженерии квантовых систем [31—33].
В данной области исследуется целенаправленное воздействие на систему со
стороны внешнего окружения, позволяющее стабилизировать и создавать слож­
ные многочастичные состояния, недостижимые в условиях термодинамического
равновесия. Возникающие при этом неравновесные стационарные состояния
могут обладать уникальными свойствами, демонстрировать экзотические фа­
зовые переходы и проявлять топологический порядок [34—36]. Особый интерес
представляют тёмные состояния (dark states) [31; 32; 37] — чистые состояния
системы, остающиеся неизменными под действием диссипации. Перспектива
использования таких состояний для задач хранения, обработки и передачи
квантовой информации [31; 38; 39] делает их важным объектом современных
исследований.

1.1 Квантовый транспорт ультрахолодных атомов

Исследование квантового транспорта ультрахолодных атомов, как направ­
ление современной физики, объединяет достижения в области управляемых
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квантовых систем и фундаментальных явлений многочастичной динамики [40].
Уникальные свойства ультрахолодных атомов, охлаждённых до температур
в несколько нанокельвинов, делают их идеальной платформой для модели­
рования сложных квантовых систем и проверки теоретических предсказаний
квантовой механики и физики конденсированного состояния вещества.

Ключевым этапом в работе с ультрахолодными атомами является их охла­
ждение до температур, близких к абсолютному нулю. Для этого используются
комбинированные методы лазерного и испарительного охлаждения [41—43].
Лазерное охлаждение позволяет замедлить атомы за счёт передачи импульса
фотонов, а испарительное охлаждение удаляет наиболее горячие частицы, сни­
жая общую температуру системы. Эти технологии, отмеченные в 1997 году
Нобелевской премией [44—46], позволяют охлаждать атомные газы до уль­
транизких температур, при которых возникают макроскопические квантовые
явления: бозе-эйнштейновские конденсаты и вырожденные ферми-газы.

Изучение квантового транспорта в последние годы получило значи­
тельный импульс благодаря экспериментальным методам, основанным на
управляемых системах с ультрахолодными атомами. Ключевую роль здесь
играют оптические решётки и дипольные ловушки, позволяющие создавать
точно контролируемые потенциалы для моделирования сложных квантовых
систем [43]. Например, в работе [47] исследовалась динамика расширения об­
лака ультрахолодного газа ферми-атомов в однородной оптической решётке,
моделирующей гамильтониан Хаббарда. В работе [48] описывается течение
сверхтекучего ферми-газа через мезоскопический канал, соединяющий два
атомных резервуара. В экспериментах [49; 50] изучались сверхтекучие токи
БЭК в кольцевой оптической ловушке с вращающимся слабым звеном (weak
link). Эти эксперименты показали наличие гистерезиса в исследуемой систе­
ме. В [51] описывается экспериментальная реализиция транспортировки облака
атомов на 28 см с использованием линз с регулируемым фокусом. При этом
авторы сообщают о минимальных потерях частиц и нагреве, а также об управ­
ление размером облака за счет изменения параметров ловушки. Работа [52]
описывает эксперименты по созданию элементов интегральных схем для управ­
ления когерентными волнами материи с использованием БЭК. В работе авторы
демонстрируют ключевые элементы, такие как Y-разветвители, волноводы и
волноводы с изгибом, созданные с помощью динамических оптических потен­
циалов. Также можно выделить серию работ выполненных в Кайзерслаутерне
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под руководством профессора Х. Отта, посвященных исследованию транспорта
БЭК в одномерной цепочке с локализованным диссипативным потенциалом,
создаваемым сканирующим электронным лучом, выбивающим атомы из ло­
вушки [53—57]. В данной экспериментальной платформе одномерная цепочка
квази-двумерных конденсатов 87Rb подвергается воздействию управляемой дис­
сипации в центральном узле, в то время как соседние узлы действуют как
резервуары с фиксированным химическим потенциалом. Эти исследования поз­
волили наблюдать формирование неравновесных стационарных состояний и
изучать динамику одномерной цепочки конденсатов в системе с локализован­
ной диссипацией, что предоставляет ценнейший экспериментальный контекст
для теоретического моделирования гранично-возбуждаемых бозонных систем.
Все приведенные выше эксперименты используют преимущества систем с уль­
трахолодными атомами [58], такие как:

– Достижение экстремально низких температур порядка нанокельви­
на [44—46];

– Гибкость оптических потенциалов для управления пространственными
измерениями и создания произвольных геометрий [43; 59; 60];

– Точная настройка межатомных взаимодействий через резонансы Феш­
баха [61; 62];

– Точная настройка туннелирования между узлами [63; 64];
– Когерентные временные масштабы, значительно превышающие аналоги

в твёрдотельных системах, а именно милисекунды вместо наносе­
кунд [65];

– Возможность проводить высокоточные измерения в подобных экспери­
ментах. В отличие от твердотельных систем и электронного транспорта,
оптические эксперименты с ультрахолодными атомами позволяют визу­
ализировать распределение атомов через метод абсорбционного изоб­
ражения, как, например, в работах [66; 67], вплоть до разрешения на
уровне отдельных узлов [68—70], что обеспечивает точное измерение
числа частиц в пространственно локализованных модах;

– Возможность изучения неравновесной динамики и релаксации к стацио­
нарному состоянию в чисто квантовых системах без неконтролируемых
примесей, характерных для твердотельных систем [4].

Особую значимость в контексте данной диссертации представляют пио­
нерские работы группы профессора Т. Эслингера по исследованию квантового
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транспорта в ультрахолодных ферми-газах [37; 66; 67; 71—76], выполненные
в Швейцарской высшей технической школе Цюриха (ETH Zurich). В осно­
вополагающем эксперименте [71] была реализована модель, которую можно
интерпретировать как гранично-возбуждаемую систему, основанную на двух
резервуарах фермионов с различными эффективными химическим потенциа­
лами, соединённых управляемым мезоскопическим каналом (Рисунок 1.1) —
архитектура, где транспорт частиц индуцируется исключительно начальным
градиентом плотности. Последующие работы [66; 67] расширили эту плат­
форму, продемонстрировав, что строгое сохранение энергии и числа частиц в
полной системе не препятствует установлению квазиравновесия через перерас­
пределение частиц между подсистемами — процесс, аналогичный термализации
в открытых квантовых системах [72]. Наиболее важной для данной дисерта­
ции является работа [67], в которой в одномерный канал между резервуарами
была спроецирована управляемая оптическая решётка, рисунок 1.1(б). Этот
эксперимент на ферми-атомах 6Li продемонстрировал ключевые явления, ак­
туальные и для бозонного случая: управляемый переход от баллистического к
изолирующему транспорту при соизмеримом заполнении решётки, чёткое про­
явление запрещённой зоны и возможность контроля проводимости с помощью
«затворного» потенциала. Несмотря на то, что сильнокоррелированные состо­
яния, наблюдавшиеся в [67], такие как жидкость Лютера-Эмери, специфичны
для фермионов, сама экспериментальная платформа, методология и результаты
данной работы имеют принципиальное значение для исследований квантово­
го транспорта в целом, включая системы бозе-частиц, изучаемые в настоящей
диссертации. В последующих работах группы, например, в [75] выявлено обра­
щение термоЭДС под влиянием взаимодействий, а в работе [73] был реализован
аналог спинтронного устройства на ультрахолодных атомах 6Li. В недавних
работах группы профессора Т. Эслингера, посвящённых необратимому транс­
порту энтропии в сверхтекучих ферми-газах [76] и изучению тёмных состояний
в режиме сильного взаимодействия [37], исследуется транспорт в ферми-систе­
мах с акцентом на роль квантовых эффектов в необратимых процессах.
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Рисунок 1.1 — Схематическое изображение экспериментальной установки в
ETH Zurich: (а) облако ультрахолодных атомов, разделенное на два резервуара
с помощью световых полей. Канал между резевуарами может быть квазиодно­
мерным [67; 73; 74] или квазидвумерным [66; 71; 72]; (б) наложение решёточной
структуры на одномерный канал с помощью микроскопа высокого разрешения

[67]. Изображения взяты из работ [66] и [67].

1.2 Гранично-возбуждаемые открытые квантовые системы: общая
концепция и математический аппарат

Основным предметом данной диссертации является квантовый транс­
порт бозонов в (квази)одномерных системах, связанных на своих краях с
резервуарами частиц. Следуя [4], будем называть эти системы — гранично-воз­
буждаемым системам (boundary driven systems). Резервуары в таких задачах
поддерживаются в различных термодинамических состояниях, отличающихся
температурой, химическим потенциалом либо плотностью частиц, что индуци­
рует стационарные потоки частиц через систему. Возникающее неравновесное
стационарное состояние (non-equilibrium steady-state) характеризуется нетриви­
альной пространственной корреляцией и фундаментальными транспортными
режимами. В зависимости от длины цепочки 𝐿, часто оказывается, что ток
частиц 𝐼 подчиняется алгебраической зависимости 𝐼 ∼ 𝐿−α [4]:

– Баллистический транспорт (α = 0);
– Диффузионный транспорт (α = 1, закон Фурье);
– Суб-/супердиффузионный транспорт (0 < α < 1 и α > 1);
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– Изоляционное поведение. В пределе α→∞ ток стремится к нулю, что
означает, что система является изолятором. В этом случае ток затухает
быстрее, чем алгебраически, в зависимости от размера системы, напри­
мер, 𝐼 ∼ 𝑒−𝐿/ξ, где ξ обозначает длину локализации.

Математической основой описания служит теория открытых квантовых систем.
Полная динамика системы 𝑆 и резервуаров 𝐵 описывается уравнением Ли­
увилля-фон Неймана:

𝜕 ̂︀ℛ𝑡𝑜𝑡

𝜕𝑡
= − 𝑖

ℏ
[ ̂︀ℋ𝑡𝑜𝑡, ̂︀ℛ𝑡𝑜𝑡], ̂︀ℋ𝑡𝑜𝑡 = ̂︀ℋ𝑆 + ̂︀ℋ𝐵 + ̂︀ℋ𝑖𝑛𝑡, (1.1)

где ̂︀ℛ𝑡𝑜𝑡 - матрица плотности системы и резервуаров, ̂︀ℋ𝑆, ̂︀ℋ𝐵 и ̂︀ℋ𝑖𝑛𝑡 - гамильто­
нианы системы, резервуаров и их взаимодействия, ℏ - приведенная постоянная
Планка (везде далее будем работать в системе единиц где ℏ = 1), а квадратные
скобки обозначают коммутатор.

Начальные условия обычно берутся такими, что 𝑆 и 𝐵 не коррелируют;
то есть начальное состояние можно представить как ̂︀ℛ𝑡𝑜𝑡(0) = ̂︀ℛ𝑆(0) ⊗ ̂︀ℛ𝐵(0)

Тогда состояние системы в момент времени 𝑡 равно

̂︀ℛ𝑡𝑜𝑡(𝑡) = ̂︀𝑈(𝑡) ̂︀ℛ𝑡𝑜𝑡(0)̂︀𝑈 †(𝑡), ̂︀𝑈(𝑡) = 𝑒−𝑖
̂︀ℋ𝑡𝑜𝑡𝑡. (1.2)

Основная цель в открытых квантовых системах — предсказать эволюцию при­
веденной (редуцированной) матрицы плотности системы ̂︀ℛ𝑆(𝑡) = Tr𝐵

[︁ ̂︀ℛ𝑡𝑜𝑡(𝑡)
]︁
,

где Tr𝐵[. . . ] обозначает частичный след по степеням свободы резервуаров. Это
можно сделать на уровне унитарного преобразования (1.2) или дифференци­
ального уравнения (1.1). Первое приводит к так называемому представлению
Крауса, а второе— к основному кинетическому уравнению на матрицу плот­
ности.

Рассматривая отображение (1.2), можно показать, что эволюция редуциро­
ванной матрицы плотности произвольной открытой квантовой системы может
быть представлена в виде [77]:

̂︀ℛ𝑆(𝑡) =
∑︁
α

̂︀𝐾α,𝑡
̂︀ℛ𝑆(0) ̂︀𝐾†α,𝑡, (1.3)

где ̂︀𝐾α,𝑡 — зависящие от времени операторы (операторы Крауса), удовлетво­
ряющие условию

∑︀
α
̂︀𝐾†α,𝑡 ̂︀𝐾α,𝑡 = 1. Для любого набора таких операторов ̂︀𝐾α

отображение (1.3) является вполне положительным и сохраняющим след. Это
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гарантирует, что оно отображает матрицы плотности в матрицы плотности, а
именно сохраняет эрмитовость, нормировку и положительную определённость,
в том числе при расширении гильбертова пространства [78].

На практике представление Крауса может оказаться неудобным, и для
описания эволюции ̂︀ℛ𝑆(𝑡) предпочтительным является дифференциальное
уравнение, в общем случае имеющее вид [79; 80]:

𝑑 ̂︀ℛ𝑆

𝑑𝑡
=

𝑡∫︁
0

𝑑𝑡′𝒦𝑡−𝑡′
[︁ ̂︀ℛ𝑆(𝑡

′)
]︁
, (1.4)

где 𝒦𝑡−𝑡′ — линейный супероператор, называемый ядром памяти. В силу ли­
нейности (1.3) это уравнение также линейно по ̂︀ℛ𝑆. Однако оно, как правило,
нелокально во времени, то есть скорость изменения редуцированной матрицы
плотности ̂︀ℛ𝑆 в момент 𝑡 зависит от её значений в предшествующие моменты
𝑡′ < 𝑡 — что является проявлением немарковости.

Уравнение (1.4) обычно сложно вывести и решить аналитически. Поэтому
часто используют более простые локальные во времени уравнения вида [3; 4]:

𝑑 ̂︀ℛ𝑆

𝑑𝑡
= −𝑖[ ̂︀ℋ𝑆, ̂︀ℛ𝑆] +𝒟( ̂︀ℛ𝑆), (1.5)

которые называют квантовыми основными кинетическими уравнениями. Член
𝒟( ̂︀ℛ𝑆), называемый диссипатором, представляет собой линейный суперопера­
тор, описывающий влияние резервуара(ов). Конкретный вид 𝒟( ̂︀ℛ𝑆) определя­
ется деталями модели, например, в параграфе 1.3 описана наиболее известная
форма диссипатора— форма Линдблада. Это подчеркивает важность микроско­
пического вывода, в котором 𝒟( ̂︀ℛ𝑆) получается из физически обоснованного
описания взаимодействия системы с резервуарами. Микроскопический вывод
остается и на сегодняшней день важной и нетривиальной задачей привлекаю­
щей внимание современных исследователей [58].

1.3 Уравнение Линдблада и подходы к его решению

Предположим, что нас интересует задача описания временной эволюции
открытой квантовой системы 𝑆, находящейся в контакте с макроскопиче­
ским резервуаром 𝐵. Строгое микроскопическое рассмотрение динамики такой
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системы требует решения уравнения Шрёдингера в полном гильбертовом про­
странстве 𝑆+𝐵 с последующим усреднением по степеням свободы резервуара. В
более общей формулировке данная задача еще более усложняется: вместо вол­
новых функций возникает необходимость решения уравнения Лиувилля-фон
Неймана (1.1) для полной матрицы плотности ̂︀ℛ𝑡𝑜𝑡(𝑡). Практическая реали­
зация подобного подхода сталкивается с принципиальными вычислительными
трудностями, обусловленными экспоненциальным ростом размерности гильбер­
това пространства при увеличении числа степеней свободы резервуара.

Эта проблема мотивирует разработку формализма, позволяющего по­
лучить замкнутое уравнение движения исключительно для редуцированной
матрицы плотности системы ̂︀ℛ𝑆(𝑡) = Tr𝐵[ ̂︀ℛ𝑡𝑜𝑡(𝑡)]. Одним из ключевых ре­
зультатов в данной области стал вывод квантового марковского кинетического
уравнения, известного как уравнение Линдблада (или Горини-Коссаковского­
Сударшана-Линдблада). Оно было независимо получено в 1976 году Витторио
Горини, Анжеем Коссаковским и Джорджем Сударшаном [6], а также Йёраном
Линдбладом [5]. Уравнение Линдблада для матрицы плотности системы ̂︀ℛ𝑆

может быть записано в виде:

𝜕 ̂︀ℛ𝑆

𝜕𝑡
= −𝑖[ ̂︀ℋ𝑆, ̂︀ℛ𝑆] +

∑︁
𝑗

𝒟[̂︀𝐿𝑗]( ̂︀ℛ𝑆), (1.6)

где ̂︀ℋ𝑆 - гамильтониан системы, 𝒟 - диссипатор, также конструкцию 𝒟[̂︀𝐿𝑗]( ̂︀ℛ𝑆)

называют супероператором Линдблада, который определяется как

𝒟[̂︀𝐿𝑗]( ̂︀ℛ𝑆) = γ𝑗

(︂̂︀𝐿𝑗
̂︀ℛ𝑆
̂︀𝐿†𝑗 − 1

2
̂︀𝐿†𝑗̂︀𝐿𝑗

̂︀ℛ𝑆 −
1

2
̂︀ℛ𝑆
̂︀𝐿†𝑗̂︀𝐿𝑗

)︂
, (1.7)

где γ𝑗 - константа релаксации, индекс 𝑗 может означать как моду так и узел си­
стемы, {̂︀𝐿𝑗} - набор некоторых операторов, которые в зарубежной литературе
также называются jump operators, описывающих диссипативную часть динами­
ки. Форма операторов ̂︀𝐿𝑗 описывает, как резервуар 𝐵 воздействует на систему
𝑆, и эта форма должна быть либо определена из микроскопических моделей
динамики система-окружающая среда, либо сформулированна феноменологи­
чески. Например, если ̂︀𝐿𝑗 = 𝑎̂𝑗, то описываемый процесс соответствует стоку
частиц в резервуар, а ̂︀𝐿𝑗 = 𝑎̂†𝑗 - накачке частицами из резервуара в узел 𝑗

[81; 82]; в работе [83] показано, что в димере выбор 𝒟[𝑎̂1 + 𝑎̂2]( ̂︀ℛ𝑆) позволяет
реализовать ситуацию, когда накачка и диссипация (сток) происходит толь­
ко для разных мод, а именно накачка для bonding mode, а диссипация для
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antibonding mode; выбор ̂︀𝐿𝑗 = 𝑎̂†𝑗𝑎̂𝑗 описывает дефазировку [81; 84]; а исполь­
зование ̂︀𝐿𝑗 = 𝑎̂†𝑗+1𝑎̂𝑗 позволяет описать некогерентный перенос частиц между
соседними узлами [85; 86]. Основное квантовое кинетическое уравнение (1.6)
описывает неунитарную эволюцию матрицы плотности открытой квантовой си­
стемы. А его главная особенность заключается в том, что если кинетическое
уравнение имеет форму (1.6) для любого набора операторов {̂︀𝐿𝑗} и 𝒟[̂︀𝐿𝑗], опре­
деленных в (1.7), то гарантированно, что отображение, описывающее динамику
системы, будет вполне положительным и сохраняющим след.

Следует подчеркнуть, что уравнение Линдблада представляет собой
фундаментальный результат: оно описывает наиболее общий вид генерато­
ра однопараметрической полугруппы вполне положительных, сохраняющих
след отображений [5]. Хотя уравнения в форме (1.6) часто возникают при
микроскопическом выводе динамики открытых систем, они не выводятся напря­
мую из точного уравнения Накадзимы–Цванцига. Действительно, применение
приближения Борна–Маркова к уравнению Накадзимы–Цванцига [3] приво­
дит к дифференциальному уравнению первого порядка более общего вида,
известному как уравнение Редфилда. Однако только при дополнительных пред­
положениях — в частности, при использовании приближения вращающейся
волны (rotating-wave approximation, RWA) или секулярного приближения —
получаемое уравнение приобретает каноническую форму Линдблада и, сле­
довательно, гарантирует полную положительность. Полная положительность
означает, что на всех временах 𝑡 ⩾ 0 матрица плотности остаётся положитель­
но полуопределённой, то есть все её собственные значения неотрицательны; и,
что ещё важнее, это свойство сохраняется даже если система будет объединена
с любой другой квантовой системой, с которой она изначально не взаимодей­
ствует. Без этих уточнений динамика может нарушать физические ограничения
и оказаться неприменимой для описания реальных квантовых процессов.

Приближение Борна–Маркова, лежащее в основе большинства моделей
марковской динамики, базируется на двух ключевых предположениях:

– Слабая связь с резервуаром: энергия взаимодействия между системой и
окружением мала по сравнению с характерными энергетическими мас­
штабами как самой системы, так и резервуара (приближение Борна);

– Быстрая релаксация резервуара: корреляционные функции резервуара
затухают на временах τ𝐵, значительно меньших характерного времени
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эволюции системы τ𝑆 (τ𝐵 ≪ τ𝑆), что позволяет пренебречь памятью
окружения (приближение Маркова).

Эти условия обеспечивают возможность замены нелокального по времени
уравнения Накадзимы–Цванцига на локальное дифференциальное уравнение,
однако, как отмечалось выше, для получения физически корректной динамики
требуется дополнительная регуляризация, обычно реализуемая через RWA.

Прямое решение уравнения Линдблада для бозонных многочастичных
систем, как правило, требует работы с матрицей плотности большой размер­
ности. Например, пусть рассматриваемая система состоит из 𝐿 = 10 узлов и
сохраняет полное число частиц в системе равное 𝑁 = 5. Тогда размерность
матрицы плотности равна 𝒩 ×𝒩 , где 𝒩 определяется через число сочетаний
с повторениями 𝒩 = 𝐶𝑁

𝐿 = (𝐿+𝑁−1)!
𝑁 !(𝐿−1)! = 2002. В случае отсутствия сохранения

частиц, число бозонов, вообще говоря, может быть бесконечным. Поэтому для
численного счета при работе с системой без условия на сохранение числа ча­
стиц используют обрезку или усечение базиса. Но даже при усечении базиса,
итоговая размерность определяется как сумма размерностей для каждого чис­
ла частиц вплоть до усечения, например, для 𝐿 = 10 и усечения на 𝑁 = 10

получаем 𝒩 =
∑︀10

𝑁=0𝐶
𝑁
𝐿 = 184 756. Это означает, что даже для сравнительно

небольших открытых систем, например для 𝐿 = 10 и усечения на 𝑁 = 10,
размерность превышает 105, что делает точные квантовые расчеты невозмож­
ными. Это подчеркивает важность приближенных методов. Согласно обзору
[81], для открытой модели Бозе—Хаббарда можно выделить такие методы как
метод волновой функции Монте-Карло (quantum jump method), приближение
среднего поля и его расширения, приближение усеченной функции Вигнера и
использование интегралов по траекториям. Ниже рассмотрим подробнее лишь
некоторые из них.

Волновая функция Монте-Карло обеспечивает точное стохастическое
моделирование малых систем через разложение уравнения Линдблада на ан­
самбль траекторий. Основное преимущество данного метода заключается в том,
что вместо эволюции матрицы плотности ̂︀ℛ𝑆 вычисляют эволюцию вектора со­
стояния |Ψ(0)⟩ (где ̂︀ℛ𝑆(0) = |Ψ(0)⟩⟨Ψ(0)|). Этот метод сочетает непрерывную
эволюцию с неэрмитовым гамильтонианом и дискретные скачки, соответству­
ющие диссипативным процессам. Его сила проявляется в анализе квантовой
запутанности и метастабильных состояний. Однако вычислительная сложность
ограничивает его применение системами с небольшим числом частиц.
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Отдельно стоит ометить подход одночастичной матрицы плотности (single
particle density matrix, SPDM), который позволяет свести исходную мно­
гочастичную задачу к задаче на двухточечные корреляторы – элементы
одночастичной матрицы плотности ρ𝑗,𝑘, определяемые следующим выражением

ρ𝑗,𝑘 = ⟨𝑎̂†𝑗𝑎̂𝑘⟩ = Tr[𝑎̂†𝑗𝑎̂𝑘 ̂︀ℛ𝑆], (1.8)

и описывающие одночастичные свойста рассматриваемой задачи. В случае, если
исходная задача, уравнение Линдблада (1.6), содержит только члены квадра­
тичные по операторам рождения и уничтожения 𝑎̂†ℓ и 𝑎̂ℓ′, то всегда можно
получить замкнутую систему уравнений на элементы SPDM

𝑑

𝑑𝑡
ρ𝑗,𝑘 = Tr[𝑎̂†𝑗𝑎̂𝑘 ̂︀ℒ𝑡( ̂︀ℛ𝑆)], (1.9)

где ̂︀ℒ𝑡 - правая часть уравнения (1.6). Во всех иных случаях замкнутую си­
стему уравнений, как правило, получить невозможно, так как будут возникать
корреляторы высоких порядков, для которых будет необходимо записывать но­
вые уравнения, что приведет к появлению цепочки зацепляющихся уравнений -
цепочке уравнений Боголюбова—Борна—Грина—Кирквуда—Ивона [81; 87], для
решения которых необходимо использовать дополнительные методы. Такие це­
почки уравнений, содержащие корреляторы разных порядков составляют суть
метода BBR (Bogoliubov back-reaction method). В рамках этого метода запи­
сывается цепочка уравнений до 𝑛-точеченого коррелятора, а все корреляторы
порядка 𝑛+1 и выше в записанных уравнениях расцепляются, тем самым позво­
ляя получить замкнутую систему уравнений [81; 88; 89]. Метод BBR позволяет
прогнозировать время разрушения конденсата и устойчивость возбуждений, но
применим лишь вблизи режима идеального БЭК.

Приближение усечённой функции Вигнера (truncated Wigner
approximation) заполняет нишу между точными и среденеполевыми методами,
моделируя динамику через стохастические уравнения в фазовом пространстве.
Этот подход, учитывающий квантовые шумы, идеален для анализа неравновес­
ного транспорта и стационарных токов в системах с резервуарами. Однако он
требует больших чисел заполнения и теряет точность при сильной запутанности
частиц. Подробнее этот метод будет рассморен в следующем параграфе.

Следует подчеркнуть, что наряду с методом основного кинетического
уравнения, существенную роль в теории квантового транспорта играет фор­
мализм Ландауэра—Бюттикера [16; 17]. Данный подход получил широкое
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распространение не только в физике твёрдого тела, а также и является теорети­
ческой основой для описания транспорта ультрахолодных атомов в оптических
решётках, например, в описанной ранее работе группы профессора Эсслинге­
ра [67]. Формализм Ландауэра—Бюттикера устанавливает фундаментальную
связь между проводимостью мезоскопической системы и энергетической за­
висимостью коэффициентов (вероятностью) прохождения 𝑇 (𝐸). Этот подход,
основанный на концепции упругого когерентного переноса, обладает рядом
существенных преимуществ: физическая прозрачность, ток выражается че­
рез вероятности прохождения носителей, что обеспечивает непосредственную
интерпретацию экспериментальных данных; вычислительная эффективность,
метод особенно продуктивен для расчёта баллистического транспорта в нано­
структурах простой геометрии; прямая связь с экспериментально измеряемой
проводимостью. Однако подход имеет существенные ограничения: неявное
предположение о бесконечных идеально термализованных резервуарах; игно­
рирование динамики релаксации: отсутствие параметра, характеризующего
скорость установления равновесия в резервуарах; ограниченная область приме­
нимости: неспособность описывать нестационарные процессы, декогеренцию и
термоэлектрические эффекты. Частичное устранение этих ограничений дости­
гается при использовании метода неравновесных функций Грина [16], который
позволяет более строго учесть взаимодействие системы с термостатами. Приме­
чательно, что как показано в цикле работ Коловского А. Р. и соавторов [90—93],
на качественном уровне наблюдается согласованность предсказаний основного
кинетического уравнения и формализма Ландауэра—Бюттикера. В частности:

– Оба подхода предсказывают эффект резонансного туннелирования;
– Немарковское основное кинетическое уравнение воспроизводит ключе­

вые особенности когерентного транспорта;
– Экспериментально наблюдаемое уширение резонансов получает есте­

ственное объяснение в рамках кинетического подхода через параметр
релаксации γ.
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1.4 Псевдоклассическое приближение

Псевдоклассическое приближение представляет собой метод описания
динамики квантовых бозонных систем, при котором эволюция, задаваемая ос­
новным кинетическим уравнением, аппроксимируется классическим процессом
в фазовом пространстве. В отличие от среднеполевого описания замкнутых
бозонных систем, где динамика конденсата сводится к детерминированному
нелинейному уравнению Гросса–Питаевского [94—96], псевдоклассический под­
ход сохраняет информацию о флуктуациях и диссипативных процессах.

Для учёта этих эффектов применяется псевдоклассическое приближение.
Его основная идея заключается в том, чтобы отобразить эволюцию квантовой
системы на классическую стохастическую динамику в фазовом пространстве.
Это достигается заменой квантовых операторов и матрицы плотности на их
классические аналоги — гладкие функции в фазовом пространстве. Матрице
плотности ̂︀ℛ ставится в соответствие одна из квазивероятностных функций
распределения, например, функция Вигнера или функция Хусими (Husimi
Q-function) [97]. Далее рассмотрим построение псевдоклассического приближе­
ния через функцию Вигнера [97—100]. В этом случае, все квантовые операторы
заменяются их символами Вейля — гладкими функциями классических пере­
менных 𝑎̃ и 𝑎̃* в фазовом пространстве

symb[ ̂︀𝐴] = 𝐴(𝑎̃,𝑎̃*). (1.10)

При условии, что вклад квантовых корреляций высоких порядков мал (на­
пример, в пределе большого числа частиц или слабой нелокальности взаимо­
действий), уравнение для эволюции функции Вигнера может быть сведено к
уравнению Фоккера–Планка. В методе усечённой функции Вигнера (truncated
Wigner approximation, TWA), это достигается путём отбрасывания членов
третьего и более высоких порядков в градиентном разложении уравнения
для функции Вигнера, что эквивалентно пренебрежению квантовыми корре­
ляциями за пределами гауссова приближения. На практике такая процедура
позволяет эффективно моделировать как когерентную, так и некогерентную
динамику в низкоразмерных бозонных системах, включая эффекты квантово­
го транспорта, рассеяния и диссипации.
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Введем символы Вейля для наиболее часто встречающихся в данной дис­
сертации операторов

symb[𝑎̂] = 𝑎̃,

symb[𝑎̂†] = 𝑎̃*,

symb[ ̂︀ℛ] =𝒲 ,

(1.11)

где 𝒲 – функция Вигнера, определяемая через матрицу плотности ̂︀ℛ
𝒲(𝑎̃,𝑎̃*) =

1

π2

∞∫︁
−∞

𝑑β𝑑β*𝑒𝑎̃β
*−𝑎̃*βTr

[︁
𝑒β𝑎̂

†−β*𝑎̂ ̂︀ℛ]︁ . (1.12)

Символ Вейля от произведения операторов выражается через произведение Мо­
яла: ̂︀𝐴 · ̂︀𝐵 → 𝐴 ⋆ 𝐵 = 𝐴 exp

[︂
1

2

(︂
𝜕←

𝜕𝑎̃

𝜕→

𝜕𝑎̃*
− 𝜕←

𝜕𝑎̃*
𝜕→

𝜕𝑎̃

)︂]︂
𝐵. (1.13)

где стрелки обозначают дифференцирование слева/справа. Использование
вместо квантовых операторов их символов Вейля обеспечивает переход от
операторного формализма к классическим уравнениям движения в фазовом
пространстве. Данная схема особенно эффективна для анализа динамики бозе­
конденсатов в слабоангармонических потенциалах, где она сохраняет ключевые
квантовые корреляции, игнорируемые в стандартном среднем поле, при этом
упрощая расчёты за счёт подавления сингулярных квантовых мод.

В качестве примера работы с произведением Мояла и символами Вейля
перепишем оператор числа частиц 𝑛̂ = 𝑎̂†𝑎̂

symb(𝑛̂) = 𝑎̃* ⋆ 𝑎̃ = 𝑎̃*𝑎̃+
1

2

(︂
𝜕𝑎̃*

𝜕𝑎̃

𝜕𝑎̃

𝜕𝑎̃*
− 𝜕𝑎̃*

𝜕𝑎̃*
𝜕𝑎̃

𝜕𝑎̃

)︂
+ · · · = |𝑎̃|2 − 1

2
.

где член −1
2 возникает из-за некоммутативности операторов 𝑎̂† и 𝑎̂, отражая

принципиально квантовую поправку к классическому выражению.
При построении псевдоклассического приближения для открытой модели

Бозе-Хаббарда ключевую роль играют два масштабных условия:

1

ℏeff
≫ 1,

1

ℏeff
𝑈 = const,

(1.14)

где ℏeff - безразмерная эффективная постоянная Планка. Первое условие, тре­
бующее малости ℏeff, обеспечивает подавление квантовых флуктуаций, что
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является необходимым критерием применимости классического описания в
фазовом пространстве. Второе условие фиксирует отношение энергии взаи­
модействия к эффективному квантовому масштабу, гарантируя сохранение
баланса между нелинейными и диссипативными эффектами в открытой си­
стеме [82].

Параметр ℏeff связан со средним числом частиц 𝑛 через следующее соотно­
шение: 1/ℏeff = 𝑛. При этом сам параметр 𝑛 может быть определен несколькими
способами. В случае закрытых систем данный параметр определяется через
среднюю плотность частиц на узел решетки 𝑛 = 𝑁/𝐿, где 𝑁 - полное число
частиц в системе. При рассмотрении открытых систем праметр 𝑛 может высту­
пать в качестве средней плотности частиц в резервуаре. При этом соотношение
1/ℏeff = 𝑛 в обоих случаях отражает физическую идеализацию, при которой
за счёт макроскопического числа частиц (𝑛≫ 1) классические статистические
эффекты оказываются более значимыми на фоне квантовых флуктуаций. Од­
нако в системах с двумя или более резервуарами возникает методологическая
неоднозначность: выбор резервуара, среднее число частиц 𝑛 в котором отож­
дествляется с 1/ℏeff. Например, для цепочки Бозе—Хаббарда соединенной с
двумя резервуарами, у которых плотность частиц в левом резевуаре больше
чем в правом, параметр 1/ℏeff можно ассоциировать со средней плотностью ча­
стиц в левом резервуаре, как это сделано в [82]. В работе [101] показано, что для
больших чисел заполнения 𝑛 псевдоклассическое приближение хорошо воспро­
изводит результаты точного квантового моделирования осцилляций Блоха для
взаимодействующих бозе-частиц [101], а также и экспериментальные результа­
ты [102]. В недавно опубликованном препринте [103] представлено сравнение
результатов точного квантового моделирования, выполненного с использовани­
ем метода квантовых траекторий (волновой функции Монте-Карло), и расчётов
в рамках псевдоклассического приближения для диссипативной цепочки Бозе—
Хаббарда из двух узлов, находящейся под действием внешнего периодического
воздействия. Авторы демонстрируют количественное согласие между результа­
тами, полученными этими двумя методами.

Условие (1.14) приводит к переопределению переменных из (1.11) к сле­
дующему виду

𝑎̃ =
√
𝑛𝑎, 𝑎̃* =

√
𝑛𝑎*. (1.15)
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Если же в условии (1.14) принять 𝑛→∞ и 𝑛𝑈 = const то псевдоклассическое
приближение становится эквивалентным приближению среднего поля.

Критическим остаётся вопрос о нижней границе 𝑛, при которой псевдо­
классическое приближение сохраняет адекватность. Теоретическое обоснование
такой границы затруднено из-за отсутствия аналитических решений для от­
крытых многочастичных систем и вычислительных ограничений прямого
квантового моделирования открытых систем с большим числом узлов и частиц.
В работе [104] было продемонстрированно, что псевдоклассическое приближе­
ние воспроизводит квантовый результат для 𝑛 = 10/2 = 5. Во второй главе
(раздел 2.2) данной дисертации представлено сравнение результатов прямого
квантового счета и псевдоклассического приближения для открытой цепочки
Бозе—Хаббарда из трех узлов.

Описанный выше математический аппарат позволяет перейти от кванто­
вого основного кинетического уравнения (1.6) к уравнению на классическую
функцию распределения. Далее используя замену (1.15) и отбрасывая в силу
малости все члены типа 𝒪(𝑛−2), получаем уравнение на функцию распре­
деления, которое переходит в уравнение Фоккера—Планка для классических
переменных. Уравнение Фоккера—Планка можно преобразовать в эквивалент­
ные стохастические дифференциальные уравнения (СДУ) Ито—Ланжевена [82].
Например, для открытой цепочки Бозе—Хаббарда с локальными потерями ча­
стиц на крайних узлах (𝐿𝑗 = 𝑎̂𝑗, 𝑗 = 1,𝐿) это дает систему 2𝐿 уравнений, по
одному на 𝑎ℓ и 𝑎*ℓ для каждого узла ℓ:

𝑑𝑎ℓ
𝑑𝑡

= −𝑖𝜕𝐻
𝜕𝑎*ℓ
− δ𝑗,ℓ

(︁γ𝑗

2
𝑎𝑗 + · · ·+ шумовые члены

)︁
;

𝑑𝑎*ℓ
𝑑𝑡

= 𝑖
𝜕𝐻

𝜕𝑎ℓ
− δ𝑗,ℓ

(︁γ𝑗

2
𝑎*𝑗 + · · ·+ шумовые члены

)︁
,

(1.16)

где 𝐻 — классический гамильтониан, записанный в терминах голоморфных
переменных (1.15), а шумовые и диссипативные члены с γ𝑗 возникают из-за
связи с резервуаром.

Хотя псевдоклассическое приближение оперирует классическими траек­
ториями, усреднение по ансамблю этих траекторий позволяет восстановить
элементы одночастичной матрицы плотности. Если получены уравнения Лан­
жевена на переменные 𝑎ℓ(𝑡) и 𝑎*ℓ(𝑡) то элементы одночастичной матрицы
плотности определяются следующим образом

ρ𝑗,𝑘(𝑡) = ⟨𝑎*𝑗(𝑡)𝑎𝑘(𝑡)⟩, 1≪ 𝑗,𝑘 ≪ 𝐿. (1.17)
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где ⟨. . .⟩ – усреднение по различным реализациям случайного процесса.

1.5 Модель Бозе—Хаббарда в физике ультрахолодных атомов

Одной из фундаментальных моделей в физике ультрахолодных атомов
является модель Бозе—Хаббарда, первоначально предложенная Х. Гершем и
Г. Ноллманом в 1963 году [12] как бозонный аналог фермионной модели
Хаббарда [13]. Данная модель – простейшая квантово-механическая модель,
применяемая для описания взаимодействующих бозонов в периодическом по­
тенциале. В рамках данной модели частицы могут перескакивать между узлами
потенциала и взаимодействовать, если находятся в одном узле. Гамильтониан
модели записывется следующим образом:

̂︀ℋ =
∑︁
ℓ

𝐸ℓ𝑛̂ℓ −
∑︁
⟨ℓ,ℓ′⟩

𝐽ℓ,ℓ′

2

(︁
𝑎̂†ℓ𝑎̂ℓ′ + h.c.

)︁
+

𝑈

2

∑︁
ℓ

𝑛̂ℓ(𝑛̂ℓ − 1). (1.18)

который содержит три ключевых компонента: энергию на узле 𝐸ℓ, матрич­
ный элемент туннелирования 𝐽ℓ,ℓ′, экспоненциально зависящий от глубины
оптической решетки, и который также может учитывать искусственные калиб­
ровочные поля [105], и параметр взаимодействия 𝑈 , пропорциональный длине
рассеяния s-волны. Здесь 𝑛̂ℓ = 𝑎̂†ℓ𝑎̂ℓ – оператор числа частиц в ℓ-м узле, 𝑎̂†ℓ и
𝑎̂ℓ – операторы рождения и уничтожения бозона в ℓ-м узле, индексы ℓ и ℓ′ ну­
меруют узлы решетки, а ⟨ℓ,ℓ′⟩ подразумевают суммирование по всем соседним
узлам, h.c. означает эрмитово сопряженный член. Знак 𝑈 определяет характер
взаимодействия: 𝑈 > 0 соответствует отталкиванию, что является типичныым
случаем для ультрахолодных атомов с короткодействующими s-волновыми рас­
сеяниями [62], а 𝑈 < 0 — притяжению. Величиной параметра взаимодействия
можно управлять с помощью резонансов Фешбаха.

Значительный прогресс в обосновании модели произошел в 1998 году, ко­
гда Якш и Цоллер [14] продемонстрировали, что динамика бозонов в глубокой
оптической решетке действительно сводится к гамильтониану Бозе—Хаббарда.
Их работа предсказала возможность наблюдения квантового фазового перехода
между сверхтекучей фазой, в которой доминирует туннелирование 𝐽 , и изолято­
ром Мотта, в котором доминирует взаимодействие 𝑈 , теоретически описанного
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ранее в работе Фишера и др. [106]. В трехмерии переход происходит при выпол­
нении условия 𝑈/𝐽 ∼ 𝑧, где 𝑧 — число ближайших соседей, например, 𝑧 = 6

для простой кубической решетки. В 2002 году, всего через четыре года после
публикации теоретической работы [14], группа Грайнера [1] экспериментально
реализовала этот переход для атомов рубидия в трехмерной оптической решет­
ке, наблюдая подавление туннелирования при увеличении глубины решетки.
Эти исследования заложили основу для использования оптических решеток в
качестве квантовых симуляторов сильно коррелированных систем [40].

Помимо описания фундаментальных квантовых фаз, таких как сверхтеку­
честь и изолятор Мотта, модель Бозе—Хаббарда служит базовой платформой
для изучения явления квантового хаоса в многочастичных системах [107; 108].
В отличие от интегрируемой модели Хаббарда для фермионов, бозонный вари­
ант при ненулевых параметрах туннелирования 𝐽 и взаимодействия 𝑈 является
неинтегрируемым и проявляет свойства квантовой хаотической системы. Это
выражается в универсальных статистических свойствах её спектра, распреде­
ление расстояний между уровнями подчиняется статистике Вигнера—Дайсона
гауссова ортогонального ансамбля, и в хаотической динамике её классическо­
го предела — дискретного нелинейного уравнения Шрёдингера, получаемого в
рамках подхода среднего поля. Переход к хаосу проявляется в динамике систе­
мы, например, в необратимом затухании блоховских осцилляций в наклонной
оптической решётке при умеренной силе поля, что было предсказано теорети­
чески и подтверждено экспериментально [102; 108].

Также стоит отметить, что на сегодняшний день активно исследуется
расширенная модель Бозе—Хаббарда, гамильтониан которой включает допол­
нительные члены, такие как межузловые взаимодействия, индуцированное
взаимодействием туннелирование (interaction induced tunnelings) и парные про­
цессы, например, парное туннелирования частиц. С последними достижениями
в этом области можно подробнее ознакомиться в недавнем обзоре [109].
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Глава 2. Открытая цепочка Бозе—Хаббарда

В настоящей главе рассматривается система, состоящая из линейной це­
почки Бозе-Хаббарда длины 𝐿 (содержащей 𝐿 узлов), в которой первый узел
соединен с левым резервуаром частиц, а последний узел — с правым резерву­
аром (рисунок 2.1).

Рисунок 2.1 — Схематичное изображение цепочки Бозе—Хаббарда, соединяю­
щей два атомных резервуара.

Основное внимание в главе уделяется анализу стационарного тока частиц
через цепочку и его зависимости от параметров системы, таких как констан­
та взаимодействия 𝑈 , длина цепочки 𝐿, а также параметры резервуаров. Как
будет показано, межчастичное взаимодействие играет ключевую роль в опреде­
лении транспортных свойств системы, приводя к переходу от баллистического
к диффузионному режиму транспорта.

2.1 Модель и основные уравнения

Для описания динамики частиц в системе запишем основное кинетическое
уравнение (1.6) для редуцированной матрицы плотности ̂︀ℛ носителей в цепочке:

𝜕 ̂︀ℛ
𝜕𝑡

= −𝑖[ ̂︀ℋ, ̂︀ℛ] + ̂︀ℒ1( ̂︀ℛ) + ̂︀ℒ𝐿( ̂︀ℛ), (2.1)

где ̂︀ℒ1( ̂︀ℛ) - супероператор Линдблада, который отвечает за обмен частицами
между левым резервуаром и первым узлом цепочки, ̂︀ℒ𝐿( ̂︀ℛ) - супероператор
Линдблада, аналогичный ̂︀ℒ1( ̂︀ℛ), но отвечающий за обмен частицами между
правым резервуаром и последним (𝐿-ым) узлом цепочки, ̂︀ℋ - гамильтониан
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Бозе—Хаббарда (1.18) записанный в узельном представлении для одномерной
цепочки.

Процесс обмена частицами между резервуаром и узлом в данной модели
может протекать в обе стороны, т.е. частицы попадают из резервуара в узел и
могут также совершать обратное движение. Таким образом супероператор ̂︀ℒℓ

будет иметь следующий вид

̂︀ℒℓ( ̂︀ℛ) = −Γℓ(𝑛ℓ + 1)

2
̂︀ℒloss
ℓ − Γℓ𝑛ℓ

2
̂︀ℒgain
ℓ (2.2)

где 𝑛ℓ - средняя плотность частиц в ℓ-ом резервуаре, ℓ = 1 соответствует лево­
му резервуару, а ℓ = 𝐿 соответствует правому резервуару, Γℓ - коэффициент,
пропорциональный интенсивности обмена частиц с резервуаром, ̂︀ℒloss

ℓ - суперо­
ператор, отвечающий за сток частиц

̂︀ℒloss
ℓ ( ̂︀ℛ) = 𝑎̂†ℓ𝑎̂ℓ

̂︀ℛ+ ̂︀ℛ𝑎̂†ℓ𝑎̂ℓ − 2𝑎̂ℓℛ̂𝑎̂†ℓ, (2.3)

̂︀ℒgain
ℓ - супероператор, отвечающий за накачку частицами

̂︀ℒgain
ℓ ( ̂︀ℛ) = 𝑎̂ℓ𝑎̂

†
ℓ
̂︀ℛ+ ̂︀ℛ𝑎̂ℓ𝑎̂†ℓ − 2𝑎̂†ℓℛ̂𝑎̂ℓ. (2.4)

Нетрудно показать, что супероператоры Линдблада (2.3) и (2.4), в слу­
чае одного осциллятора соединенного с одним резервуаром со средним числом
частиц 𝑛, обеспечивают релаксацию осциллятора к стационарному состоянию
со средним числом заполнения, заданным параметром 𝑛 [82]. Также отметим,
что коэффициент Γℓ из (2.2) играет роль константы релаксации/ диссипации
в основном кинетическом уравнении (2.1). Для определенности будем считать,
что средняя плотность частиц в левом резервуаре превышает таковую в пра­
вом: 𝑛1 > 𝑛𝐿. Таким образом, левый резервуар действует как источник частиц,
а правый — как сток.

Для более глубокого понимания релаксационных процессов, обусловлен­
ных супероператорами Линдблада ̂︀ℒℓ, перепишем уравнение (2.1) в следующем
виде:

𝜕 ̂︀ℛ
𝜕𝑡

= −𝑖[ ̂︀ℋ, ̂︀ℛ] + ̂︀𝒟( ̂︀ℛ) + ̂︀𝒢( ̂︀ℛ), (2.5)
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где введены релаксационные супероператоры ̂︀𝒟 и ̂︀𝒢, определяемые выраже­
ниями:

̂︀𝒟( ̂︀ℛ) = −1
2

∑︁
ℓ=1,𝐿

𝐷ℓ

(︁[︁
𝑎̂ℓ,
[︁
𝑎̂†ℓ,
̂︀ℛ]︁]︁+ [︁𝑎̂†ℓ, [︁𝑎̂ℓ, ̂︀ℛ]︁]︁)︁ , (2.6)

̂︀𝒢( ̂︀ℛ) = −1
2

∑︁
ℓ=1,𝐿

Γℓ

(︁
𝑎̂†ℓ𝑎̂ℓ

̂︀ℛ+ ̂︀ℛ𝑎̂†ℓ𝑎̂ℓ − 2𝑎̂ℓ ̂︀ℛ𝑎̂†ℓ)︁ . (2.7)

Физическая интерпретация этих супероператоров следующая: супероператор ̂︀𝒟
описывает диффузионные процессы с коэффициентами диффузии 𝐷ℓ = Γℓ𝑛ℓ,
тогда как супероператор ̂︀𝒢 соответствует диссипативным процессам с коэф­
фициентами трения Γℓ. Теоретический анализ показывает, что независимый
контроль коэффициентов 𝐷ℓ и Γℓ в принципе возможен в ультрахолодных га­
зах. Это позволяет исследовать различные режимы: при Γℓ = 0 наблюдается
чистая диффузия, а при 𝐷ℓ = 0 — чистая диссипация. В общем случае конку­
ренция диффузионных и диссипативных процессов приводит к установлению
стационарного состояния.

2.2 Псевдоклассическое приближение

Для анализа системы применим подход, описанный в разделе 1.4, который
позволяет перейти от основного кинетического уравнения для матрицы плотно­
сти к классическому описанию в терминах функции распределения в фазовом
пространстве. А именно, перейдем от уравнения (2.5) для редуцированной мат­
рицы плотности ̂︀ℛ к уравнению Фоккера-Планка для функции распределения
𝑓 = 𝑓(a, a*; 𝑡), где a = (𝑎1, . . . , 𝑎𝐿) — вектор комплексных амплитуд осцил­
ляторов:

𝑑𝑓

𝑑𝑡
= {𝐻, 𝑓}+

∑︁
ℓ=1,𝐿

𝒟(ℓ)(𝑓) +
∑︁
ℓ=1,𝐿

𝒢(ℓ)(𝑓), (2.8)
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где

𝒟(ℓ)(𝑓) = 𝐷ℓ
𝜕2𝑓

𝜕𝑎ℓ𝜕𝑎*ℓ
, (2.9)

𝒢(ℓ)(𝑓) = Γℓ

2

(︂
𝑎ℓ

𝜕𝑓

𝜕𝑎ℓ
+ 2𝑓 + 𝑎*ℓ

𝜕𝑓

𝜕𝑎*ℓ

)︂
, (2.10)

𝐻 = 𝐸0

𝐿∑︁
ℓ=1

𝑎*ℓ𝑎ℓ −
𝐽

2

𝐿−1∑︁
ℓ=1

(𝑎*ℓ+1𝑎ℓ + 𝑎*ℓ𝑎ℓ+1) +
𝑔

2

𝐿∑︁
ℓ=1

|𝑎ℓ|4, (2.11)

где 𝑔 = 𝑛1𝑈 – макроскопическая константа взаимодействия, а {. . . , . . .} – клас­
сические скобки Пуассона. Член 𝒢(ℓ)(𝑓) соответствует трению (точнее, сжатию
фазового объема), а член 𝒟(ℓ)(𝑓) описывает диффузию. Отметим, что коэффи­
циент 𝐷ℓ из уравнения (2.9) при замене (1.15) определяется как 𝐷ℓ = Γℓ𝑛̄ℓ/𝑛̄1.

От уравнения Фоккера-Планка (2.8) можно перейти к эквивалентной си­
стеме стохастических уравнений Ланжевена:

𝑖𝑑𝑎ℓ =
𝜕𝐻

𝜕𝑎*ℓ
𝑑𝑡− 𝑖

Γℓ

2
(δ1,ℓ + δ𝐿,ℓ)𝑑𝑡+

√︀
𝐷ℓ(δ1,ℓ + δ𝐿,ℓ)𝑑ξℓ(𝑡), (2.12)

где 𝑑ξℓ(𝑡) - комплексный белый шум, причем

⟨𝑑ξℓ(𝑡)𝑑ξℓ′(𝑡′)⟩ = δℓ,ℓ′δ(𝑡− 𝑡′)𝑑𝑡 (2.13)

где ⟨. . .⟩ обозначает усреднение по различным реализациям случайного процес­
са. Таким образом, в рамках псевдоклассического приближения мы перешли
от исходной квантовой задачи к классической задаче о системе 𝐿 связанных
нелинейных осцилляторов. При этом первый и последний осцилляторы испы­
тывают трение с коэффициентами Γ1 и Γ𝐿 соответственно, а также подвержены
воздействию внешних случайных сил с амплитудами

√
𝐷1 и

√
𝐷𝐿.

Следует сделать два важных замечания относительно проведенных выкла­
док. Во-первых, как отмечалось в разделе 1.4, существует определенная свобода
в выборе параметра 1/ℏeff = 𝑛 в выражениях (1.14) и (1.15). В данной главе этот
параметр отождествлен со средней плотностью частиц в левом резервуаре 𝑛1,
то есть 𝑛 = 𝑛1. Соответственно, макроскопическая константа взаимодействия
𝑔 в гамильтониане (2.11) связана с микроскопической константой 𝑈 соотноше­
нием 𝑔 = 𝑛1𝑈 . Также отметим, что благодаря условию 𝑛1 > 𝑛𝐿, квадраты
модулей амплитуд всех осцилляторов удовлетворяют условию |𝑎ℓ|2/𝑛1 ⩽ 1.
Во-вторых, хотя условие (1.14) требует выполнения 𝑛1 ≫ 1, вопрос о точной
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нижней границе применимости псевдоклассического приближения остается от­
крытым, поскольку его решение требует полного знания квантовой динамики
системы. Численное решение основного кинетического уравнения (2.5) возмож­
но только для систем с относительно малым числом узлов.

На рисунке 2.2 приводится сравнение прямого (квантового, сплошные
линии) и псевдоклассического (штрихпунктирные линии) результатов для це­
почки из трех узлов (𝐿 = 3). Сплошные линии соответствуют населенностям
узлов, нормированных на плотность частиц в левом резервуаре ℐℓ/𝑛1 =

Tr[𝑛̂ℓ
̂︀ℛ]/𝑛1 = 𝑛ℓ/𝑛1; штрихпунктирные линии соответствуют квадратам моду­

лей амплитуд осцилляторов, усредненным по различным реализациям белого
шума, и также нормированным на плотность частиц в левом резервуаре
ℐℓ/𝑛1 = ⟨|𝑎ℓ|2⟩/𝑛1. Разумное согласие между штрихпунктирной и сплошной
линиями указывает на то, что при таком размере системы нижней границей
применимости псевдоклассического приближения можно считать 𝑛1 = 2. Хо­
тя обсуждаемая нижняя граница не является решающей для излагаемых ниже
результатов, следует помнить, что эта граница существует. Также на вставке по­
казано сравнение результатов для тока 𝐼(𝑡), полученных из псевдоклассическоо
приближения и прямого решения квантового уравнения.

2.3 Случай взаимодействующих и невзаимодействующих частиц

Рассмотрим сначала систему в отсутствие межчастичного взаимодействия
(𝑈 = 0, 𝑔 = 0). В этом случае для элементов одночастичной матрицы плотно­
сти (1.8) может быть получено замкнутое уравнение, следующее из уравнения
Линдблада (2.5):

𝑑

𝑑𝑡
ρ𝑙,𝑚 = 𝑖

𝐽

2
(ρ𝑙,𝑚+1 + ρ𝑙,𝑚−1 − ρ𝑙+1,𝑚 − ρ𝑙−1,𝑚)

−
∑︁
𝑗=1,𝐿

Γ

2
(δ𝑙,𝑗 + δ𝑚,𝑗)ρ𝑙,𝑚 +

∑︁
𝑗=1,𝐿

𝐷𝑗δ𝑙,𝑗δ𝑚,𝑗.
(2.14)

Стационарное решение уравнения (2.14) представляет собой трехдиагональную
матрицу с чисто мнимыми недиагональными элементами, которые определяют
стационарный ток 𝐼. Сам ток 𝐼(𝑡) может быть выражен через элементы одно­
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Рисунок 2.2 — Сравнение квантового (штрихпунктирная линия) и псевдоклас­
сического (сплошная линия) результатов для 𝐿 = 3, 𝐽 = 1, 𝑛1 = 2, 𝑛𝐿 = 1,
Γ = Γ1 = Γ𝐿 = 0.5 (𝐷1 = Γ, 𝐷𝐿 = Γ 𝑛𝐿/𝑛1) и 𝑈 = 0.5 (𝑔 = 1). В кванто­
вом случае пространство Фока усекается до

∑︀
ℓ 𝑛ℓ ⩽ 20, что дает размерность

гильбертова пространства 𝒩 = 1771. В псевдоклассичесском приближении
усреднение производится по 16000 различным реализациям случайного процес­
са. Начальное условие соответсвую пустой цепочке (осцилляторам в состоянии
покоя). На вставке показано сравнение результатов для тока через цепочку [82].

частичной матрицы плотности следующим образом:

𝐼(𝑡) =
𝐽

𝐿− 1

𝐿−1∑︁
ℓ=1

Im[ρℓ,ℓ+1(𝑡)]. (2.15)

Рассмотрим теперь случай Γ1 = Γ2 = Γ, когда стационарный ток допуска­
ет компактное аналитическое выражение [82; 110]:

𝐼 =
Γ𝐽2

𝐽2 + Γ2
· 𝐷1 −𝐷𝐿

2Γ
𝑛̄1 =

Γ𝐽2

𝐽2 + Γ2
· 𝑛1 − 𝑛𝐿

2
. (2.16)

Как следует из (2.16), ток пропорционален разности коэффициентов диффузии
𝐷1 −𝐷𝐿 или разности средних плотностей частиц резервуаров 𝑛1 − 𝑛𝐿 в кван­
товой постановке задачи. Стационарные значения действий ℐℓ (диагональные
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элементы SPDM) определяются выражением:

ℐℓ =
𝐷1 −𝐷𝐿

2Γ
𝑛̄1 =

𝑛1 − 𝑛𝐿

2
. (2.17)

Соотношение (2.17) справедливо для всех осцилляторов, за исключением пер­
вого и последнего, значения действия для которых несколько отклоняются от
указанной величины вследствие прямой связи с резервуарами.

Теперь рассмотрим случай взаимодействующих частиц и сравним его
со случаем отсутствия взаимодействия. На левой колонке рисунка 2.3 пока­
зана динамика диагональных элементов одночастичной матрицы плотности,
полученных в рамках псевдоклассического приближения согласно (1.17), для
цепочки длиной 𝐿 = 5 с учетом взаимодейсвтия, рисунок 2.3в, и без взаимо­
действия, рисунок 2.3а. Остальные параметры: Γ1 = Γ2 = Γ = 0.5, 𝐷1 = 0.5,
𝐷𝐿 = 0.25, начальные условия ρℓ,ℓ(𝑡 = 0) = 0, в начальный момент времени
все осцилляторы покоятся.

В невзаимодействующем случае (сплошные линии на рисунке 2.3) на­
блюдается быстрая релаксация к стационарному состоянию с действиями
ℐℓ, определяемыми выражением (2.17), рисунок 2.3г, и током, описываемым
формулой (2.16), рисунок 2.3б. На рисунке 2.3б хорошо видно, что наличие
взаимодействия (красная штриховая линия) приводит к подавлению стацио­
нарного тока.

Для интерпретации наблюдаемых эффектов целесообразно обратиться к
анализу спектральных плотностей осцилляторов. Спектральная плотность мощ­
ности 𝑃 (ν) определяется следующим образом [111; 112]

𝑃 (ν) = ⟨|𝑎(ν)|2⟩, 𝑎(ν) = lim
𝑇→∞

1

𝑇

∫︁ 𝑇

0

𝑎(𝑡)𝑒𝑖ν𝑡𝑑𝑡 . (2.18)

На рисунке 2.4 (левая колонка) представлены спектральные плотности осцил­
ляторов в цепочке при 𝑔 = 0. В данном случае легко выделить частоты
ω𝑘 коллективных мод, которые задаются вещественной частью комплексных
полюсов функции Грина для системы линейных дифференциальных уравне­
ний (2.12) с опущенными стохастическими членами. При умеренных значениях
констант затухания (коэффициентов релаксации Γ) частоты коллективных мод
можно аппроксимировать собственными частотами линейной цепочки

ω𝑘 = −𝐽 cos (2π𝑘/𝐿), 𝑘 = 1, . . . , 𝐿, (2.19)
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Рисунок 2.3 — Сравнение результатов с 𝑔 = 2 (штрихпунктирная линия) и 𝑔 = 0

сплошная линия) для цепочки длиной 𝐿 = 5. (а, в) Динамика нормированного
среднего действия ℐℓ/𝑛1; (б) Динамика среднего тока; (г) Стационарные зна­
чения действий ℐℓ. Значения параметров: 𝐽 = 1, Γ1 = Γ2 = Γ = 0.5, 𝑛̄1 = 1,
𝑛̄𝐿 = 0.5. Усреднение производилось по 12000 различным реализациям случай­

ного процесса.

расположенными в зоне проводимости |ω𝑘| ⩽ 𝐽 .
Возбуждение коллективных мод внешними силами, действующими на гра­

ничные осцилляторы, обеспечивает эффективный перенос возбуждений вдоль
цепочки. В квантовомеханическом описании это соответствует баллистическому
транспорту бозе-частиц от левого резервуара к правому. Независимость стаци­
онарного тока от длины цепочки 𝐿 является характерным признаком данного
режима. На правой колонке рисунка 2.4 показаны спектральные плотности
осцилляторов при 𝑔 = 2. Наличие взаимодействия между частицами, нелиней­
ности у осцилляторов в классической интерпретации, приводит к разрушению
коллективных мод и исчезновению резонансных пиков в спектрах. Перенос воз­
буждений в этом случае приобретает диффузионный характер, что проявляется
в значительном подавлении стационарного тока и возникновении его зависи­
мости от длины цепочки 𝐿. Эта зависимость будет рассмотрена в следующем
разделе.
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Рисунок 2.4 — Спектральная плотность осцилляторов в цепочке для 𝑔 = 0

(левая колонка) и 𝑔 = 2 (правая колонка). Остальные параметры такие же, как
на рисунке 2.3.

2.4 Предел длинной цепочки

Согласно аналитическому решению (2.16), легко проверяемому численным
моделированием, при отсутствии взаимодействия стационарный ток не зависит
от длины цепочки, а транспорт характеризуется как баллистический. Если же
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Рисунок 2.5 — Стационарный ток как функция обратной длины цепочки для
разных значений средней плотности частиц в правом резервуаре 𝑛̄𝐿. Маркера­
ми обозначены численные результаты: 𝑛̄𝐿 = 0 синие кружки, 𝑛̄𝐿 = 1 желтые
квадраты, 𝑛̄𝐿 = 1.5 фиолетовые ромбы. Штриховые линии соответствую ап­
проксимации степенной функцией вида 𝐼 = β𝐿−α. Остальные параметры:
𝑛̄1 = 2, 𝑔 = 1 (𝑈 = 0.5), 𝐽 = 1, Γ1 = Γ2 = Γ = 0.5, усреднение производится
по 8192 различным реализациям случайного процесса. Планки погрешностей
соответствуют статистической ошибке из-за конечного числа реализаций слу­

чайного процесса [82].

теперь учесть межчастичное взаимодействие 𝑈 , или нелинейность 𝑔 в рамках
псевдоклассического приближения, то у стационарного тока появляется зави­
симость от длины, причем характер этой зависимости определяется разностью
∆𝑛̄ = 𝑛̄1 − 𝑛̄𝐿, то есть перепадом плотности между резервуарами, рисунок 2.5.

В предельном случае чистого стока (𝑛̄𝐿 = 0) зависимость 𝐼(𝐿) с высо­
кой точностью следует степенному закону 𝐼 ∼ 𝐿−α, где α = 0.6712. Согласно
принятой классификации из работы [4], обсуждавшейся в разделе 1.2 главы 1,
значение показателя α ≈ 0.67 (0 < α < 1) однозначно указывает на субдиффу­
зионный режим транспорта. По мере увеличения средней плотности в правом
резервуаре 𝑛̄𝐿 показатель степени в законе 𝐼 ∼ 𝐿−α увеличивается, прибли­
жаясь к единице, что соответствует диффузионному режиму (𝐼 ∼ 1/𝐿). Это
наглядно демонстрируют результаты аппроксимации для исследованных пара­
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метров:

𝑛̄𝐿 = 0 : 𝐼 ∼ 𝐿−0.6712 ;

𝑛̄𝐿 = 1 : 𝐼 ∼ 𝐿−0.9264 ;

𝑛̄𝐿 = 1.5 : 𝐼 ∼ 𝐿−0.9485 .

Важно отметить, что для 𝑛̄𝐿 = 1.5 точность степенной аппроксимации с α ≈
0.95 статистически неотличима от линейной зависимости стационарного тока
от обратной длины цепочки 𝐼 = 1/𝐿. Таким образом, уменьшение перепада
плотности ∆𝑛̄ = 𝑛̄1−𝑛̄𝐿 управляет плавным кроссовером от субдиффузионного
к диффузионному транспорту в системе.

2.5 Выводы по главе

В данной главе проведено исследование стационарного тока бозонных но­
сителей в цепочке Бозе—Хаббарда длины 𝐿, в которой первый и последний
узлы соединены с резервуарами частиц, играющими роль источника и стока
частиц соответственно. Анализ выполнен с использованием псевдоклассическо­
го подхода, который сводит исходную квантовую задачу к классической задаче
о системе 𝐿 связанных нелинейных осцилляторов, где первый и последний ос­
цилляторы подвержены одновременному воздействию трения и стохастического
возбуждения. В случае отсутствия межчастичных взаимодействий (𝑔 = 0)
аналитически рассчитаны элементы ρ𝑙,𝑚 одночастичной матрицы плотности,
которые в классическом подходе соответствуют корреляционным функциям
между 𝑙-м и 𝑚-м осцилляторами. Показано, что псевдоклассический подход
достаточно хорошо воспроизводит квантовомеханические результаты. Также
показано, что стационарный ток, определяемый недиагональными элемента­
ми стационарной одночастичной матрицы плотности, пропорционален разности
плотностей частиц в резервуарах ∆𝑛̄ = 𝑛̄1 − 𝑛̄𝐿 и не зависит от длины це­
почки 𝐿, что является характерным признаком баллистического транспорта.
Для случая конечных межчастичных взаимодействий (𝑔 > 0), которые делают
классические осцилляторы нелинейными, методом численного моделирования
обнаружено значительное подавление стационарного тока по сравнению с ли­
нейным случаем. Показано, что ток становится зависимым от длины цепочки,
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и в случае малой разности ∆𝑛̄ ≪ 𝑛̄1 масштабируется как 1/𝐿, что свиде­
тельствует о переходе к диффузионному режиму транспорта. Качественное
объяснение смены транспортного режима дано на основе анализа спектральных
плотностей осцилляторов. В отсутствие взаимодействия возбуждение коллек­
тивных мод приводит к эффективному баллистическому переносу. Наличие
нелинейности разрушает коллективные моды, что проявляется в исчезнове­
нии резонансных пиков в спектрах и приводит к установлению диффузионного
механизма переноса. Подчеркнуто, что переход от баллистического к диффузи­
онному транспорту с ростом константы взаимодействия является кроссовером,
а не фазовым переходом. Таким образом, проведенное исследование демонстри­
рует, что межчастичное взаимодействие играет определяющую роль в динамике
открытых квантовых систем, управляя переходом между принципиально раз­
ными режимами транспорта и приводя к сложной зависимости стационарных
характеристик системы от её параметров.

Результаты главы опубликованы в работе [82].
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Глава 3. Транспорт в ромбической цепочке

Настоящая глава расширяет исследования, представленные в предыдущей
главе, рассматривая транспорт бозонных частиц через одномерную ромбиче­
скую решетку, находящуюся под воздействием внешнего магнитного поля и
соединяющую два резервуара частиц (рисунок 3.1).

Рисунок 3.1 — (а) Элементарный блок ромбической цепочки. Элементарная
ячейка содержит три узла, обозначенных как C, A и B. Поток через каждую
ячейку характеризуется фазой Пайерлса Φ, которая влияет на амплитуды тун­
нелирования (константы перескока) между узлами. (б) Полная конфигурация
системы с резервуарами: ромбическая цепочка, состоящая из 𝑀 элементарных
блоков (ромбов) и соединяющая два резервуара. (в) Индексация узлов в цепоч­

ке.

Известно, что спектр Блоха такой решетки состоит из двух дисперсионных
зон и одной бездисперсионной (плоской) зоны, образованной локализованными
состояниями. Более того, приложение внешнего магнитного поля позволяет мо­
дифицировать дисперсионное соотношение дисперсионных зон, также делая их
плоскими при значении потока Φ = π [113—115]. Это связывает вопросы рас­
сматриваемые в данной главе с другими фундаментальными задачами, такими
как роль плоских зон в квантовом транспорте [116—118] и устойчивость локали­
зованных состояний в условиях межчастичного взаимодействия [113; 119; 120].
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В экспериментах с ультрахолодными атомами в оптических решетках для
создания эффекта, аналогичного действию магнитного поля, используется син­
тетическое (искуственное) магнитное поле. Поскольку атомы, такие как 87Rb,
электрически нейтральны, на них не действует сила Лоренца — основная си­
ла, вызывающая отклонение заряженных частиц в магнитном поле. Однако
нужный эффект достигается за счёт модификации параметров решетки: если
особым образом модулировать константы перескока 𝐽𝑙,𝑚 между её узлами, это
приводит к возникновению фазы Пайерлса (Φ). Именно эта фаза заставляет
нейтральные атомы «воспринимать» воздействие искусственного магнитного
поля. Первую успешную экспериментальную реализацию этого подхода для
ультрахолодного газа атомов рубидия в двумерной квадратной решетке пред­
ставила группа И. Блоха в 2011 году [121].

Ромбическая цепочка с фазами Φ = 0 и Φ = π была экспериментально
реализована на нескольких физических платформах. В частности, недавно её
реализация на трансмонах была продемонстрирована группой исследователей
из Принстона [122]. Также аналогичные структуры были реализованы в фотон­
ных системах [115] и в электрических цепях [123; 124].

3.1 Описание системы

Элементарная ячейка ромбической решетки состоит из трех узлов, обозна­
чаемых как C𝑚, A𝑚 и B𝑚, где 𝑚 = 1, 2, ...,𝑀 – номер ячейки (рисунок 3.1c).
Гамильтониан Бозе—Хаббарда для данной системы записывается в виде:

̂︀ℋ = −1
2

∑︁
⟨𝑙,𝑚⟩

(𝐽𝑙,𝑚𝑎̂
†
𝑙 𝑎̂𝑚 + h.c.) +

𝑈

2

𝐿∑︁
ℓ

𝑛̂ℓ(𝑛̂ℓ − 1), (3.1)

где 𝐽𝑙,𝑚 – матричный элемент туннелирования между узлами 𝑙 и 𝑚, по моду­
лю равный 𝐽 , а остальные члены в точности совпадают с описанными ранее
в (1.18). В используемой калибровке: 𝐽C𝑚,A𝑚

= 𝐽𝑒𝑖Φ/2, 𝐽C𝑚,B𝑚
= 𝐽𝑒−𝑖Φ/2, а

элементы туннелирования между узлами A𝑚-C𝑚+1 и B𝑚-C𝑚+1 вещественны и
равны 𝐽 . Для численного моделирования узлы решетки перенумеровываются
в линейном порядке: C1, A1, B1, C2, A2, B2, . . . , C𝑀+1. Таким образом, общее
число узлов составляет 𝐿 = 3𝑀 + 1.
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Частицы поступают в решетку из левого резервуара через первый узел
(C1) и уходят в правый резервуар через последний узел (C𝑀+1). Динамика си­
стемы описывается основным кинетическим уравнением для редуцированной
матрицы плотности ̂︀ℛ(𝑡) носителей в решетке (2.1), с описанными в предыду­
щей главе супероператорами Линдблада (2.3) и (2.4). Как и предыдущей главе
супероператоры Линдблада параметризуются константами релаксации Γ1, Γ𝐿

и средней плотностью частиц в резервуарах 𝑛̄1, 𝑛̄𝐿. Для определенности по­
лагаем 𝑛̄1 > 𝑛̄𝐿.

3.2 Случай невзаимодействующих частиц

При отсутствии взаимодействия между частицами задача сводится к од­
ночастичной. В этом случае трансляционная инвариантность системы вдоль
направления цепочки позволяет напрямую вычислить одночастичный спектр,
состоящий из трёх зон [113]. Зонная структура решетки определяется уравне­
нием:

ε0(κ) = 0, ε±(κ) = ±𝐽
√︀

1 + cos(Φ/2) cos(κ− Φ/2), (3.2)

где κ - квазиимпульс, ε0(κ) – бездисперсионная плоская зона, а ε±(κ) – дис­
персионные зоны. Особый интерес представляет случай Φ = π, при котором
дисперсионные зоны также становятся плоскими: ε±(κ) = ±𝐽 , что приводит
к полной локализации волновых функций и прекращению транспорта из-за де­
структивной интерференции, рисунок 3.2.

Также для элементов одночастичной матрицы плотности (SPDM) ρ𝑙𝑚(𝑡) =
Tr[𝑎̂†𝑙 𝑎̂𝑚 ̂︀ℛ(𝑡)] может быть получено замкнутое уравнение:

𝑑

𝑑𝑡
ρ𝑙𝑚(𝑡) = −𝑖[ ̂︀𝐻, ̂︀ρ]𝑙𝑚 − ∑︁

𝑗=1,𝐿

γ𝑗

2
(δ𝑙,𝑗 + δ𝑚,𝑗)ρ𝑙𝑚 +

∑︁
𝑗=1,𝐿

γ𝑗𝑛̄𝑗δ𝑙,𝑗δ𝑚,𝑗, (3.3)

где ̂︀𝐻 – одночастичный гамильтониан.
Рассмотрим сначала случай Φ = 0, когда уравнение (3.3) можно решить

аналитически. Абсоллютные значения элементов стационарной SPDM представ­
ленны на рисунке 3.2. Здесь стационарные населенности узлов C одинаковы (за
исключением первого и последнего узлов) и определяются уравнением:

ρ
(𝑚)
C,C =

𝑛̄1 + 𝑛̄𝐿

2
, (3.4)
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а населенности узлов A и B составляют половину этой величины. Более того,
недиагональные элементы ρ𝑙,𝑚 (здесь 𝑙 и 𝑚 — два ближайших узла решетки)
одинаковы. Эти элементы определяют средний ток бозе-атомов через решетку,
который подчиняется уравнению

𝐼(Φ = 0) =
2𝐽2Γ1Γ𝐿(𝑛̄1 − 𝑛̄𝐿)

(2𝐽2 + Γ1Γ𝐿)(Γ1 + Γ𝐿)
, (3.5)

уравнение выше значительно упращается, если принять Γ1 = Γ𝐿 = Γ:

𝐼(Φ = 0) =
𝐽2Γ

𝐽2 + Γ2/2
· 𝑛̄1 − 𝑛̄𝐿

2
. (3.6)

Сравнивая уравнение выше с уравнением (2.16), приходим к выводу, что при
Φ = 0 ромбическая цепочка ведёт себя подобно простой одномерной цепочке
с чётными узлами, задаваемыми «суммой» узлов A и B ромбической цепочки.
Также стоит отметить, что разность 𝑛̄1−𝑛̄𝐿 можно переписать как 𝑛̄1(1−𝑛̄𝐿/𝑛̄1).
Тогда, нормируя стационарный ток 𝐼 на 𝑛̄1, он становится функцией всего двух
параметров: отношения 𝑛̄𝐿/𝑛̄1 и отношения Γ/𝐽 .
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Рисунок 3.2 — Абсолютные значения элементов стационарной SPDM для 𝑀 = 7

при разных значениях магнитного потока. Параметры: Γ1 = Γ𝐿 = 0.4𝐽 , 𝑛̄𝐿/𝑛̄1 =

0.5.

Далее рассмотрим случай Φ = π (правая панель на рисунке 3.2). Как
и ожидалось, в этом случае распространение частиц по цепочке блокируется
деструктивной интерференцией, и ток строго равен нулю. Для населённостей
краевых узлов имеем

ρ1,1 = ρ
(1)
C,C = 𝑛̄1, ρ𝐿,𝐿 = ρ

(𝑀+1)
C,C = 𝑛̄𝐿, (3.7)
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а населенности соседних узлов A и B составляют половину этих значений.
Также следует отметить, что димеры A–B на краях решетки находятся в анти­
симметричном (левый край) и симметричном (правый край) состояниях, то есть

ρA,B = ∓√ρA,AρB,B. (3.8)

К сожалению, простого аналитического выражения для стационарного то­
ка при произвольном значении магнитного потока Φ не существует. Более того,
результат зависит от длины цепочки. На рисунке 3.3 представлена зависимость
стационарного тока от фазы Пайерлса Φ для цепочек разной длины (𝑀 ∈ [2, 7])
в случае невзаимодействующих частиц. Видно, что с ростом 𝑀 зависимости
быстро сходятся к предельной кривой, которая с хорошей точностью аппрок­
симируется выражением:

𝐼(Φ) ≈ 𝐼(Φ = 0) cos2(Φ/2), (3.9)

где 𝐼(Φ = 0) – ток при нулевом потоке (3.6). При Φ = π ток тождественно
равен нулю для любой длины решетки, что соответствует полной блокировке
транспорта из-за деструктивной интерференции. Природа этой зависимости не
сводится к среднему квадрату групповой скорости [110], и ее строгое обоснова­
ние остается открытой проблемой.

3.3 Случай взаимодействующих частиц

Для анализа транспорта при наличии межчастичного взаимодействия
(𝑈 ̸= 0) используется псевдоклассическое приближение, описанное в разде­
ле 1.4, и успешно примененное в главе 2. Исходное квантовое кинетическое
уравнение в форме Линдблада сводится к многомерному уравнению Фоккера­
Планка для функции распределения 𝑓(a, a*; 𝑡) в фазовом пространстве a =

(𝑎1, . . . , 𝑎𝐿), а затем – к системе стохастических уравнений Ланжевена:

𝑖𝑎̇𝑙 =
𝜕𝐻

𝜕𝑎*𝑙
− 𝑖

Γ𝑙

2
(δ𝑙,1 + δ𝑙,𝐿)𝑎𝑙 +

√︀
𝐷𝑙(δ𝑙,1 + δ𝑙,𝐿)ξ𝑙(𝑡),

где 𝐻 – классический гамильтониан, получаемый из (3.1) переходом от операто­
ров рождения и уничтожения к паре классических голоморфных переменных
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Рисунок 3.3 — Зависимость нормированного стационарного тока 𝐼/𝑛̄1 от фа­
зы Пайерлса Φ для невзаимодействующих частиц и разного числа ромбов 𝑀 .
Параметры: Γ1 = Γ𝐿 = 0.4𝐽 , 𝑛̄𝐿/𝑛̄1 = 0.5. Пунктирная линия – формула (3.9).

𝑎̂𝑙/
√
𝑛̄1 → 𝑎𝑙, 𝑎̂†𝑙/

√
𝑛̄1 → 𝑎*𝑙 ; 𝐷𝑙 = Γ𝑙𝑛̄𝑙/𝑛̄1 – коэффициенты диффузии; ξ𝑙(𝑡) –

комплексный белый шум. Макроскопическая константа взаимодействия опре­
деляется как 𝑔 = 𝑈𝑛̄1.

На рисунке 3.4 показано влияние взаимодействия на стационарный ток
для решетки с 𝑀 = 5 (𝐿 = 16). Видно, что взаимодействие подавляет ток в обла­
сти слабого поля (Φ ≈ 0), что согласуется с результатами для линейной цепочки
(глава 2) и свидетельствует о переходе от баллистического к диффузионному
режиму транспорта. Напротив, в области Φ ≈ π, где ток для невзаимодействую­
щих частиц стремится к нулю (и строго равен нулю при Φ = π), взаимодействие
разрушает локализацию и приводит к появлению конечного тока. Это согла­
суется с результатами работы [113], в которой анализируется энергетический
спектр двух взаимодействующих фермионов в ромбической цепочке под дей­
ствием внешенго магнитного поля, а также с результатами работы [120], в
которой конкретно рассматривается устойчивость локализованных состояний
по отношению к взаимодействиям. Таким образом, взаимодействие разрушает
интерференционные эффекты, ответственные за блокировку транспорта.

Разрушение локализации при Φ = π носит динамический характер и свя­
зано с неустойчивостью локальных A-B состояний из-за взаимодействия. Этот
процесс иллюстрируется рисунком 3.5, на котором показана временная динами­
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Рисунок 3.4 — Зависимость нормированного стационарного тока от фазы Пай­
ерлса Φ для цепочки с 𝑀 = 5 и разных значений макроскопической константы
взаимодействия 𝑔. Параметры: Γ1 = Γ𝐿 = 0.4𝐽 , 𝑛̄𝐿/𝑛̄1 = 0.5. Планка погрешно­

стей указывает на статистическую ошибку метода Монте-Карло [125].

ка населеннойстей узлов для Φ = π и 𝑔 = 4. В частности, в работе [120] было
показано, что антисимметричное локализованное состояние A–B подвержено ди­
намической неустойчивости, которая приводит к возбуждению незащищённого
симметричного состояния A–B. Поскольку развитие неустойчивости занимает
некоторое время, в ромбической цепочке мы имеем очень длительный переход­
ный режим при Φ = π. Наблюдается длительный переходный процесс, в ходе
которого происходит последовательное заполнение узлов C вдоль решетки. В
течение этого переходного процесса мы наблюдаем последовательное заселение
узлов C с временной задержкой, определяемой временем неустойчивости (ри­
сунок 3.5). Когда все узлы C оказываются заселенными, система переходит в
стационарный режим с диффузионным транспортом из левого резервуара в
правый.

Псевдоклассическое приближение также позволяет несколько иначе взгля­
нуть на влияние межчастичных взаимодействий на квантовый транспорт. В то
время как в квантовой картине учет взаимодействий приводит к деградации
когерентных свойств SPDM, в классической картине, где взаимодействующие
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Рисунок 3.5 — Временная динамика популяций узлов (диагональных элементов
SPDM) для Φ = π, 𝑀 = 3, 𝑔 = 4. Параметры: Γ1 = Γ𝐿 = 0.4𝐽 , 𝑛̄𝑅 = 0.

Усреднение по 960 реализациям [125].

бозоны в каждом узле решетки рассматриваются как классические нелиней­
ные осцилляторы, потеря когерентности связана с десинхронизацией между
различными осцилляторами из-за того, что частота нелинейного осциллятора
зависит от его амплитуды.

3.4 Выводы по главе

В настоящей главе в рамках псевдоклассического приближения исследо­
ван стационарный ток бозонных носителей в ромбической цепочке под действи­
ем внешнего искусственного магнитного поля, соединяющей два резервуара
частиц. В случае невзаимодействующих частиц ток обусловлен интерферен­
цией частиц, движущихся по двум альтернативным путям между узлами C
соседних ячеек. При нулевом потоке интерференция конструктивна, и ток
максимален. При потоке, соответствующем фазе Пайерлса Φ = π, интерферен­
ция становится деструктивной, что приводит к полной блокировке транспорта.
Для промежуточных значений потока ток приближенно следует зависимости
cos2(Φ/2). Наличие межчастичного взаимодействия (𝑔 ≳ 𝐽) кардинально изме­
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няет транспортные свойства системы. Взаимодействие подавляет ток в области
слабого поля, что соответствует переходу от баллистического к диффузионно­
му режиму транспорта. В области Φ ≈ π взаимодействие, напротив, разрушает
локализацию и приводит к появлению конечного тока. Таким образом, при уме­
ренных взаимодействиях ток становится практически независимым от значения
магнитного потока. Проведенное исследование демонстрирует, что взаимодей­
ствие играет определяющую роль в квантовом транспорте через периодические
структуры со сложной зонной структурой, подавляя интерференционные эф­
фекты и приводя к установлению универсального диффузионного режима
транспорта.

Результаты главы опубликованы в работах [125—128].
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Глава 4. Одномерная цепочка с контактами

В предыдущих главах анализ тока бозе-частиц проводился в рамках
стандартной открытой модели Бозе-Хаббарда, где влияние резервуаров учиты­
вается введением супероператоров Линдблада. Эти супероператоры описывают
сток и накачку частиц из/в резервуар и действуют на первый и последний узлы
цепочки. В классическом приближении данная модель соответствует ситуации,
когда первый и последний осцилляторы подвержены трению и возбуждают­
ся белым шумом, интенсивность которого определяется средней плотностью
частиц в соответствующих резервуарах [82]. Однако стандартная открытая
модель Бозе—Хаббарда подразумевает марковское приближение, которое не все­
гда оправдано, особенно для случая низкотемпературных резервуаров с почти
сконденсированными бозе-частицами. В настоящей главе предлагается решение
этой проблемы за счет введения немарковской модели открытой цепочки Бозе—
Хаббарда, которая представляет собой бозонный аналог немарковской модели
для ферми-частиц, обсуждавшейся в работах [90—93]. В данной главе показано,
что в псевдоклассическом приближении предлагаемая модель использует вме­
сто белого шума узкополосный шум с хорошо определённой средней частотой.
Это приближает нас к экспериментальным условиям, описанным в работе [29],
и одновременно к ситуации, с которой мы сталкиваемся в физике твердого тела
для фермионов с четко определенной энергией Ферми. В частности, подобно
фермионному случаю, мы можем рассмотреть явление резонансного туннели­
рования [16].

4.1 Модель системы с контактами

Рассмотрим усложненную модель открытой системы Бозе—Хаббарда, в
которой резервуары смоделированы как кольцевые контакты (рисунок 4.1).
Каждый контакт моделируется одномерной цепочкой длины 𝑀 , замкнутой в
кольцо. Эти контакты присоединены к первому или последниму узлу основной
одномерной цепочки длины 𝐿 [129]. Бозоны могут туннелировать между узла­
ми цепочки и между узлами кольца с интенсивностью 𝐽𝑠 и 𝐽𝑟 соответственно,
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при этом 𝐽𝑠 ∼ 𝐽𝑟, а связь между цепочкой и кольцами контролируется малой
константой ε ≪ 𝐽𝑠, 𝐽𝑟.

Для каждого из колец можно определить химический потенциал и темпе­
ратуру; если температура или химический потенциал левого и правого колец
отличаются, то можно наблюдать направленный ток частиц через цепочку.

Рисунок 4.1 — Схематическое изображение цепочки Бозе—Хаббарда с кольце­
выми контактами.

Динамика системы описывается основным кинетическим уравнением для
полной матрицы плотности ̂︀ℛ(𝑡):

𝜕 ̂︀ℛ
𝜕𝑡

= −𝑖[ ̂︀ℋ, ̂︀ℛ] + ∑︁
𝑗=L,R

[︁ ̂︀ℒ(𝑗)
𝑑 ( ̂︀ℛ) + ̂︀ℒ(𝑗)

𝑔 ( ̂︀ℛ)]︁ , (4.1)

где полный гамильтониан ̂︀ℋ имеет вид:

̂︀ℋ = ̂︀ℋs +
∑︁
𝑗=L,R

̂︀ℋ(𝑗)
r +

∑︁
𝑗=L,R

̂︀ℋ(𝑗)
ε . (4.2)

Гамильтониан цепочки ̂︀ℋs задаётся выражением:

̂︀ℋs = δ

𝐿∑︁
ℓ=1

𝑛̂ℓ −
𝐽s

2

𝐿−1∑︁
ℓ=1

(𝑎̂†ℓ+1𝑎̂ℓ + h.c.) +
𝑈

2

𝐿∑︁
ℓ=1

𝑛̂ℓ(𝑛̂ℓ − 1), (4.3)

где δ – энергия на узле, которая в данной системе выступает как аналог на­
пряжения затвора, а 𝑎̂†ℓ и 𝑎̂ℓ – бозонные операторы рождения и уничтожения,
дейтвующие на узле цепочки с индексом ℓ. Гамильтонианы колец ̂︀ℋ(𝑗)

r записы­
ваются в терминах бозонных операторов 𝑏̂†𝑘 и 𝑏̂𝑘, действующих в пространстве
Фока, построенном на блоховских состояних, т.е. индекс 𝑘 указывает на опре­
деленную моду, а не узел кольца:

̂︀ℋ(𝑗)
r =

𝑀∑︁
𝑘=1

𝐸𝑘𝑏̂
(𝑗)†
𝑘 𝑏̂

(𝑗)
𝑘 , 𝐸𝑘 = −𝐽r cos

(︂
2π𝑘

𝑀

)︂
. (4.4)
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Гамильтонианы связи ̂︀ℋ(𝑗)
ε :

̂︀ℋ(𝑗)
ε = − ε

2
√
𝑀

𝑎̂†ℓ𝑗

𝑀∑︁
𝑘=1

𝑏̂
(𝑗)
𝑘 + H.c., (4.5)

где ℓ𝑗 = 1 для левого кольца (𝑗 = L) и ℓ𝑗 = 𝐿 для правого (𝑗 = R). Далее
полагаем 𝐽𝑠 = 𝐽𝑟 ≡ 𝐽 = 1, δ = 0, 𝑈 = 0 если не оговорено иное. Таким образом,
все константы энергии измеряются в единицах 𝐽 .

Термодинамические свойства резервуаров задаются супероператорами
Линдблада:

̂︀ℒ(𝑗)
𝑑 ( ̂︀ℛ) = −γ

2

𝑀∑︁
𝑘=1

(𝑛̄𝑗,𝑘 + 1)
(︁
𝑏̂
(𝑗)†
𝑘 𝑏̂

(𝑗)
𝑘
̂︀ℛ− 2𝑏̂

(𝑗)
𝑘
̂︀ℛ𝑏̂(𝑗)†𝑘 + ̂︀ℛ𝑏̂(𝑗)†𝑘 𝑏̂

(𝑗)
𝑘

)︁
, (4.6)

̂︀ℒ(𝑗)
𝑔 ( ̂︀ℛ) = −γ

2

𝑀∑︁
𝑘=1

𝑛̄𝑗,𝑘

(︁
𝑏̂
(𝑗)
𝑘 𝑏̂

(𝑗)†
𝑘
̂︀ℛ− 2𝑏̂

(𝑗)†
𝑘
̂︀ℛ𝑏̂(𝑗)𝑘 + ̂︀ℛ𝑏̂(𝑗)𝑘 𝑏̂

(𝑗)†
𝑘

)︁
, (4.7)

где
𝑛̄𝑗,𝑘 =

1

𝑒β(𝐸𝑘+µ𝑗) − 1
. (4.8)

Супероператоры Линдблада (4.6) и (4.7) обеспечивают релаксацию числа ча­
стиц в кольце к распределению Бозе—Эйнштейна (4.8) с заданным химическим
потенциалом µ и обратной температурой β. Скорость, с которой происходит
эта релаксация, определяется константой γ. В дальнейшем в качестве управ­
ляющего параметра используется средняя плотность частиц в кольце 𝑛̄𝑗 =∑︀𝑀

𝑘=1 𝑛̄𝑗,𝑘/𝑀 , которая вместе с температурой однозначно определяет химиче­
ский потенциал µ. Далее будем обозначать плотности частиц в левом и правом
кольцах через 𝑛̄L и 𝑛̄R соответственно.

4.2 Одночастичная матрица плотности

4.2.1 Структура и динамика SPDM

Для случая невзаимодействующих частиц уравнение (4.1) может быть све­
дено к уравнению на одночастичную матрицу плотности (single particle density
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matrix, SPDM). Для простоты предположим, что к цепочке присоединен только
левый контакт, тогда полная SPDM системы имеет блочную структуру:

ρ̂ =

(︃
ρ̂r ρ̂ε

ρ̂†ε ρ̂s

)︃
, (4.9)

где ρ̂s – SPDM цепочки, с элементами определяемыми как ρ𝑙,𝑙′ = Tr[𝑎̂†𝑙 𝑎̂𝑙′ ̂︀ℛ]; ρ̂r

– SPDM кольца, с элементами определяемыми как ρ𝑞,𝑞′ = Tr[𝑏̂†𝑞𝑏̂𝑞′ ̂︀ℛ]; ρ̂ε – блок,
описывающий корреляции между цепочкой и кольцом, с элементами опреде­
ляемыми как ρ𝑞,𝑙 = Tr[𝑏̂†𝑞𝑎̂𝑙 ̂︀ℛ]. Динамика SPDM, с учетом блочной структуры
введенной выше, описывается системой уравнений:

𝜕ρ̂s

𝜕𝑡
= −𝑖[𝐻̂s, ρ̂s]− 𝑖ε

(︁
𝑉 †1 ρ̂ε − ρ̂†ε𝑉1

)︁
, (4.10)

𝜕ρ̂ε
𝜕𝑡

= −𝑖𝐻̂rρ̂ε + 𝑖ρ̂ε𝐻̂s −
γ

2
ρ̂ε − 𝑖ε

(︁
𝑉1ρ̂s − ρ̂r𝑉1

)︁
, (4.11)

𝜕ρ̂r

𝜕𝑡
= −𝑖[𝐻̂r, ρ̂r]− 𝑖ε

(︁
𝑉1ρ̂

†
ε − ρ̂ε𝑉

†
1

)︁
+ γ

(︁
ρ̂(0)r − ρ̂r

)︁
, (4.12)

где 𝐻̂s - одночастичный гамильтониан цепочки

𝐻̂s = −
𝐽s

2

𝐿∑︁
ℓ=1

(|1 + ℓ⟩⟨ℓ|+ 𝑐.𝑐.), (4.13)

𝐻̂r - одночастичный гамильтониан кольца

𝐻̂r = −𝐽r

𝑀∑︁
𝑘=1

cos

(︂
2π𝑘

𝑀

)︂
|𝑘⟩⟨𝑘|, (4.14)

𝑉1 - оператор связи кольца с крайним левым узлом цепочки,

𝑉1 =
1

2
√
𝑀

𝑀∑︁
𝑘=1

|𝑘⟩⟨ℓ = 1|, (4.15)

ρ̂
(0)
r - равновесная SPDM кольца

ρ̂(0)r =
𝑀∑︁
𝑘=1

|𝑘⟩⟨𝑘|
𝑒β[𝐽 cos (2π𝑘/𝑀)−µ] − 1

. (4.16)
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4.2.2 Обобщение на два контакта и вычисление тока

Систему уравнений (4.10) — (4.12) можно легко обобщить на случай двух
контактов, в котором второй контакт присоединен к последнему узлу цепочки.
Для того чтобы рассмотреть случай с двумя контактами, необходимо перейти
от ρ̂r к ρ̂𝑗r , где 𝑗 принимает значение 𝑗 = L для левого контакта и 𝑗 = R для
правого контакта. В этом случае результирующая SPDM будет иметь размер
(𝑀 + 𝐿 + 𝑀) × (𝑀 + 𝐿 + 𝑀), и её можно будет разбить на девять блоков, а
не на четыре, как в случае с одним контактом. Ток частиц через цепочку 𝐼(𝑡)

вычисляется через элементы SPDM системы:

𝐼(𝑡) =
1

𝐿− 1
Tr[ρ̂s(𝑡)𝐼], 𝐼𝑙,𝑚 = 𝐽

δ𝑙,𝑚+1 − δ𝑙,𝑚−1

2𝑖
, (4.17)

где 𝐼𝑙,𝑚 - матричные элементы оператора 𝐼.

4.3 Псевдоклассическое приближение

4.3.1 Уравнение Фоккера-Планка и уравнения Ланжевена

Для анализа системы в случае взаимодействующих частиц снова при­
меним псевдоклассическое приближение, описанное в главе 1 (раздел 1.4) и
главе 2 (раздел 2.2). В рамках данного приближения основное кинетическое
уравнение (4.1) переходит в уравнение Фоккера-Планка на функцию Вигнера
𝑓 = 𝑓(a,a*,b(𝑗), (b(𝑗))*; 𝑡). Уравнение Фоккера-Планка имеет следующий вид:

𝜕𝑓

𝜕𝑡
= {𝐻, 𝑓}+

∑︁
𝑗=L,R

[︁
𝒟(𝑗)(𝑓) + 𝒢(𝑗)(𝑓)

]︁
, (4.18)

где 𝐻 – классический гамильтониан, получаемый в результате замены опера­
торов рождения и уничтожения классическими каноническими переменными,
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𝒟(𝑗) и 𝒢(𝑗) – диффузионный и диссипативный члены:

𝒟(𝑗)(𝑓) = γ

𝑀∑︁
𝑘=1

(︂
𝑛̄𝑗,𝑘 +

1

2

)︂
𝜕2𝑓

𝜕𝑏
(𝑗)
𝑘 𝜕(𝑏

(𝑗)
𝑘 )*

, (4.19)

𝒢(𝑗)(𝑓) = γ

2

𝑀∑︁
𝑘=1

(︃
𝑏
(𝑗)
𝑘

𝜕𝑓

𝜕𝑏
(𝑗)
𝑘

+ 2𝑓 + (𝑏
(𝑗)
𝑘 )*

𝜕𝑓

𝜕(𝑏
(𝑗)
𝑘 )*

)︃
. (4.20)

Индекс 𝑗 в уравнениях (4.19) и (4.20), аналогично более ранним выкладкам
в этой главе, указывает на левый или правый контакт. Полученные диффузи­
онный (4.19) и диссипативный (4.20) члены аналогичны (2.9) и (2.10) и также
описывают диффузию и трение, действующие на осцилляторы в кольцах. Снова
перейдем от уравнения Фоккера-Планка (4.18) к системе уравнений Ланжевена:

𝑖 𝑑𝑏
(𝑗)
𝑘 =

(︁
𝐸𝑘 − 𝑖

γ

2

)︁
𝑏
(𝑗)
𝑘 𝑑𝑡+

√︂
γ𝑛̄𝑗,𝑘

2
𝑑ξ

(𝑗)
𝑘 −

ε

2
√
𝑀

𝑎ℓ𝑗𝑑𝑡, (4.21)

𝑖 𝑑𝑎1 =

(︂
δ𝑎1 −

𝐽

2
𝑎2 + 𝑔|𝑎1|2𝑎1

)︂
𝑑𝑡− ε

2
𝑑χL, (4.22)

𝑖 𝑑𝑎𝑙 =

(︂
δ𝑎𝑙 −

𝐽

2
(𝑎𝑙−1 + 𝑎𝑙+1) + 𝑔|𝑎𝑙|2𝑎𝑙

)︂
𝑑𝑡, 1 < 𝑙 < 𝐿, (4.23)

𝑖 𝑑𝑎𝐿 =

(︂
δ𝑎𝐿 −

𝐽

2
𝑎𝐿−1 + 𝑔|𝑎𝐿|2𝑎𝐿

)︂
𝑑𝑡− ε

2
𝑑χR, (4.24)

где χ𝑗(𝑡) = 𝑀−1/2∑︀
𝑘 𝑏

(𝑗)
𝑘 (𝑡), 𝑔 = 𝑈𝑛̄L, 𝑑ξ

(𝑗)
𝑘 (𝑡) — комплексный белый шум,

причём
⟨𝑑ξ(𝑗)𝑘 (𝑡) 𝑑ξ

(𝑗′)
𝑘′ (𝑡′)⟩ = 2δ𝑘,𝑘′δ𝑗,𝑗′δ(𝑡− 𝑡′) 𝑑𝑡, (4.25)

а ⟨. . .⟩ обозначает усреднение по различным реализациям случайного про­
цесса. Величина χ𝑗 должна быть рассмотрена как случайная, так как она
представляет собой сумму переменных 𝑏𝑘, которые подчиняются уравнениям
Ланжевена (4.21).

4.3.2 Анализ характера шума и влияние температуры

Обсудим уравнения (4.21) — (4.24) подробнее для случая 𝑔 = 0. При ε = 0

уравнение (4.21) описывает затухающий гармонический осциллятор под воз­
действием случайной внешней силы. В этом случае существует стационарное
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решение, для которого ⟨𝑏*𝑘𝑏𝑘⟩ = 𝑛̄𝑘, где индекс кольца 𝑗 = L,R опущен для крат­
кости. Уравнения (4.22) — (4.24) представляют собой уравнения движения для
цепочки связанных линейных осцилляторов, на первый и последний из которых
действуют стохастические силы χ𝐿(𝑡) и χ𝑅(𝑡) соответственно.

Охарактеризуем стохастическую силу χ𝑗(𝑡) её спектральной плотностью
𝑃𝑗(ν) = |χ𝑗(ν)|2, где χ𝑗(ν)— преобразование Фурье от χ𝑗(𝑡). На рисунке 4.2
представлена спектральная плотность 𝑃 (ν) для одного из идентичных кон­
тактов при фиксированном γ = 0.1 и трёх различных значениях обратной
температуры β = 0.1, 1, 10. Поскольку контакты идентичны, мы ограничемся
рассмотрением только одного контаткта. Из рисунка 4.2 видно, что конденса­
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Рисунок 4.2 — Спектральная плотность стохастической силы χ(𝑡) для 𝑛̄ = 1,
γ = 0.1, 𝑀 = 100 и различных β (синяя линия β = 10, красная линия β = 1,
пурпурная линия β = 0.1). На вставке: распределение Бозе—Эйнштейна для

тех же температур.

ция бозонов в низкоэнергетические блоховские состояния приводит к изменению
характера шума χ(𝑡) от широкополосного к узкополосному. Также стоит отме­
тить, что дальнейшее понижение температуры ниже 1/β = 0.1 не влияет на
вид кривой, поскольку в пределе β → ∞ её форма определяется значением γ,
а не шириной распределения квазиимпульса, которая стремится к δ-функции.
Аналогичное утверждение справедливо и для температур выше 1/β = 10, по­
скольку распределение квазиимпульса уже практически является плоским при
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β = 0.1. Стоит отметить, что для цепочки с кольцевыми контактами также
существует некоторая свобода в выборе параметра ℏeff = 1/𝑛̄, о чем уже упоми­
налось в разделе 2.2; например, как это сделано в данной главе, можно принять
𝑛̄ = 𝑛̄L.

4.4 Стационарный ток

4.4.1 Зависимость тока от константы релаксации

В данном разделе рассматривается поведение стационарного тока 𝐼 =

𝐼(𝑡 → ∞). На рисунке 4.3 представлена типовая зависимость стационарного
тока от константы релаксации γ и обратной температуры β при фиксирован­
ной длине колец 𝑀 . Рассмотрим предел γ → 0, в котором стационарный ток

Рисунок 4.3 — Зависимость стационарного тока от γ и β для 𝐿 = 5, ε = 0.4,
𝑛̄L = 1, 𝑛̄R = 0.1, размер колец 𝑀 = 100.

стремится к нулю, 𝐼 → 0. Данное поведение является прямым следствием конеч­
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ности моделируемых резервуаров, где они представлены кольцами из 𝑀 узлов.
Механизм этого эффекта заключается в следующем: при γ → 0 разрешает­
ся спектр резервуара и его дискретные уровни не совпадают с дискретными
уровнями системы, что приводит к подавлению тока. Этот эффект, связанный
с дискретизацией спектра конечных резервуаров, подробно исследован в ряде
работ. В частности, было показано, что критическое значение параметра релак­
сации γ, при котором наблюдается переход к режиму с подавленным током,
уменьшается с ростом размера резервуара [91; 130; 131]. Таким образом, пове­
дение стационарного тока при γ < 10−2 на рисунке 4.3 обусловлено конечным
размером резервуаров.

Стоит подчеркнуть, что рассматриваемый случай конечных резевуа­
ров не является лишь артефактом численной реализации. Модель конечных
резервуаров, в свою очередь связанных с теперь уже марковскими внеш­
ними резервуарами через релаксацию, представляет также самостоятельный
физический интерес. Она соответствует ряду реальных экспериментальных
конфигураций в мезоскопических системах. Например, в работах [130; 132] рас­
сматривается транспорт электронов через молекулярный мостик, соединяющий
два контакта, в рамках подхода, в котором конечные электроды описываются
дискретным набором своих собственных состояний. Эти состояния, в свою оче­
редь, явно рассматриваются как открытая система, обменивающаяся частицами
и энергией с окружением посредством релаксационных членов в основном ки­
нетическом уравнении на матрицу плотности. Важно отметить, что ключевое
отличие исследуемой модели от стандартного подхода заключается в явном учё­
те структуры резервуаров. Роль резервуаров здесь играют кольца с дискретным
спектром, равновесие в которых поддерживается линдбладовскими членами.
Это делает исследуемую модель немарковской по отношению к бозе-хаббардов­
ской цепочке, поскольку динамика последней определяется не мгновенным, а
запаздывающим откликом структурированных резервуаров.

Менее очевидным является исчезновение тока при γ → ∞. Формально
этот результат может быть получен с помощью борновского и марковского
приближений, применённых теперь уже непосредственно к связи цепочки с
кольцами. В этом пределе кольца могут быть исключены из явного рассмот­
рения, и задача сводится к стандартной открытой модели Бозе—Хаббарда, в
которой цепочка непосредственно связана с бесструктурными резервуарами че­
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рез эффективную константу релаксации:

Γ = ε2/γ. (4.26)

Стационарный ток в такой модели для невзаимодействующих частиц, как по­
казано в главе 2, определяется выражением (2.16):

𝐼 =
Γ𝐽2

𝐽2 + Γ2
· 𝑛1 − 𝑛𝐿

2
.

Отсюда непосредственно видно, что при γ → ∞ (Γ → 0) ток стремится к
нулю как 𝐼 ∼ 1/γ.

4.4.2 Зависимость тока от температуры

Теперь проанализируем зависимость стационарного тока от температуры.
При умеренных значениях γ на рисунке 4.3 наблюдается выраженная ступенька
при β ∼ 𝐽 , где ток уменьшается на порядок величины (см. также рисунок 4.5).
Этот ступенька обусловлена бозе-конденсацией в контактах при низких тем­
пературах.

Для детального анализа воспользуемся псевдоклассическим приближени­
ем. На рисунке 4.4 представлены спектральные плотности стохастических сил
χL(𝑡) и χR(𝑡) (красные линии), а также спектральные плотности осцилляторов
цепочки (синие линии), которые представляют собой квадрат мудуля Фурье­
образа 𝑎ℓ(𝑡). Левая колонка соответствует случаю β = 0.1. При этом значении
обратной температуры можно идентифицировать собственные частоты ω𝑖 и
собственные моды 𝑋(𝑖) изолированной цепочки, получаемые диагонализацией
одночастичного гамильтониана цепочки 𝐻𝑠:

𝐻̂s𝑋
(𝑖) = ω𝑖𝑋

(𝑖). (4.27)

Положения пиков, хорошо аппроксимируемые лоренцианами с шириной ∼ ε2,
совпадают с ω𝑖, а высоты пиков пропорциональны |𝑋(𝑖)

ℓ |2. Для β = 0.1 ши­
рокополосная стохастическая сила возбуждает все собственные моды цепочки.
Правый столбец на рисунке 4.4 относится к случаю β = 10, где узкополос­
ная стохастическая сила способна возбудить только низшую моду. Поскольку
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Рисунок 4.4 — Спектральные плотности шума и осцилляторов цепочки для
β = 0.1 (слева) и β = 10 (справа).

групповая скорость на дне зоны проводимости стремится к нулю, в низкотемпе­
ратурном пределе наблюдается значительно меньший ток. В представленных
численных данных также проявляется эффект обратного влияния цепочки
на кольца. Это влияние уменьшается с уменьшением ε. Однако даже для
рассматриваемого значения ε = 0.4 им можно пренебречь. Таким образом,
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спектральная плотность стохастической силы может быть аппроксимирована
зависимостью, показанной на рисунке 4.2 (см. также раздел 4.5).
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Рисунок 4.5 — Стационарный ток как функция обратной температуры для
γ = 0.1 и различных плотностей частиц: (𝑛̄𝐿, 𝑛̄𝑅) = (2, 0.2) (верхняя сплош­
ная линия с маркерами в виде кружков), (1, 0.1) (средняя сплошная линия с
маркерами в виде звездочек), (0.5, 0.05) (нижняя сплошная линия с маркерами
в виде ромбов). Штриховые линии – верхняя и нижняя кривые, умноженные

на множители 1/2 и 2 соответственно.

4.4.3 Зависимость тока от плотности частиц

Наконец, обсудим зависимость тока от плотности частиц в резервуарах.
Из общих соображений следует, что стационарный ток через цепочку пропорци­
онален разности 𝑛̄L − 𝑛̄R. Также хорошо известно, что при большей плотности
частиц конденсация бозонов происходит при более высокой температуре. Сле­
довательно, пропорциональное увеличение параметров 𝑛̄L и 𝑛̄R приведёт к
пропорциональному увеличению тока. В подтверждение этого утверждения на
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рисунке 4.5 показан ток как функция обратной температуры для различных
плотностей частиц в резервуарах. Видно, что после линейного масштабиро­
вания вертикальной оси и соответствующего нелинейного масштабирования
температурной оси все три кривые совпадают в областях больших и малых β.

4.5 Немарковское основное кинетическое уравнение

Для невзаимодействующих бозонов вывод основного кинетического урав­
нения для одночастичной матрицы плотности цепочки

ρ𝑙,𝑙′ = Tr[𝑎̂†𝑙 𝑎̂𝑙′ ̂︀ℛ], 1 ⩽ ℓ,ℓ′ ⩽ 𝐿, (4.28)

аналогичен выводу для фермионных носителей [91; 92]. Простая дифференци­
альная форма основного кинетического уравнения может быть получена только
при выполнении определенных предположений, известных как марковское и
борновское приближения. В рамках борновского приближения, которое предпо­
лагает слабую связь между цепочкой и резервуарами, обратным воздействием
системы на резервуары можно пренебречь. Это позволяет аппроксимировать
резервуары равновесными состояниями, в частности, использовать для одно­
частичной матрицы плотности бозонов в резервуарах равновесную матрицу
плотности ρ̂

(0)
𝑟 из уравнения (4.16)), определяемую распределением Бозе—Эйн­

штейна (4.8). Марковское же приближение, пренебрегающее эффектами памяти
в динамике резервуаров, обеспечивает локальность полученного уравнения по
времени.

Согласно [91; 92], основное кинетическое уравнение для одночастичной
матрицы плотности носителей в цепочке в борновском приближении имеет вид:

𝜕ρ̂s

𝜕𝑡
= −𝑖[𝐻̂s, ρ̂s] + ε2

∑︁
ℓ=1,𝐿

(︁
𝐾̂ℓ + 𝐾̂†ℓ

)︁
, (4.29)

где 𝐻̂s – одночастичный гамильтониан цепочки (4.13), а оператор 𝐾̂ℓ опреде­
ляется выражением:

𝐾̂ℓ =
|ℓ⟩⟨ℓ|
4

∫︁ 0

−𝑡
𝑑τ 𝑒

γ
2 τ
[︀
𝒥𝐹 (𝐽rτ)1̂s − 𝒥0(𝐽rτ)ρ̂s(τ+ 𝑡)

]︀
𝑈̂s(τ), (4.30)
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где 𝒥0 – функция Бесселя первого рода нулевого порядка; 1̂s – единичная мат­
рица размерности 𝐿×𝐿; 𝑈̂𝑠(τ) = exp(−𝑖𝐻̂𝑠τ) – оператор эволюции; 𝒥𝐹 задается
выражением:

𝒥𝐹 (𝐽r𝑡) =
1

2π

∫︁ π

−π
𝑑κ

𝑒−𝑖𝐽r cos(κ)𝑡

𝑒β[𝐽r cos(κ)+µ] − 1
. (4.31)

Если пренебречь эффектами памяти, интегро-дифференциальное урав­
нение (4.29) преобразуется в марковское основное кинетическое уравнение.
Формально это осуществляется с помощью общего соотношения для медлен­
но меняющейся функции:∫︁ 0

−𝑡
𝑑τ 𝑒

γ
2 τ𝒜(τ+ 𝑡) ≈ 2

γ
𝒜(𝑡), (4.32)

которое становится точным в пределе γ → ∞. В результате получаем:

𝜕ρ̂s

𝜕𝑡
= −𝑖[𝐻̂s, ρ̂s]− Γ

∑︁
ℓ=1,𝐿

(︂
1

2
{|ℓ⟩⟨ℓ|, ρ̂s} − 𝑛̄ℓ|ℓ⟩⟨ℓ|

)︂
, (4.33)

где Γ = ε2/γ; {..., ...} обозначает антикоммутатор. Уравнение (4.33) – другая
форма записи уравнения (2.14), которое, как показано в главе 2, допускает ана­
литическое решение, приводящее к стационарному току (2.16).

Интересно обсудить применимость борновского и марковского прибли­
жений в связи с численными данными, представленными на рисунке 4.3.
Сплошные линии на рис. 4.6 представляют сечения рисунка 4.3 для β = 0.1

(высокая температура), β = 1 (умеренная температура) и β = 10 (низкая тем­
пература). Пунктирная линия соответствует решению, полученному на основе
марковского уравнения ((4.33)). Видно, что марковское приближение справед­
ливо лишь для достаточно больших значений γ > 5. В отличие от него,
немарковское уравнение ((4.29)) остается адекватным вплоть до γ ≈ 0.1. Сле­
дует отметить, что для описания ситуации при γ < 0.1 также может быть
использовано немарковское уравнение, однако это требует увеличения размера
колец 𝑀 , поскольку теория была получена в пределе 𝑀 →∞. Таким образом,
численная реализация с 𝑀 = 100 позволяет корректно описывать систему при
γ ≳ 0.1. Немарковское основное кинетическое уравнение особенно эффективно
для описания явления резонансного туннелирования, которое будет рассмотре­
но в следующем разделе.
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Рисунок 4.6 — Сравнение результатов, полученных на основе марковского урав­
нения (4.33) (штриховая линия) и немарковского уравнения (4.29) (сплошные
линии с символами), с точными результатами для SPDM (сплошные линии).
Разные сплошные линии соответствуют разным значениям обратной темпера­
туры β = 0.1, 1, 10 (сверху вниз). Остальные параметры как на рисунке 4.3.

4.6 Резонансное туннелирование

4.6.1 Постановка задачи и условия резонанса

Резонансное туннелирование фермионов представляет собой хорошо изу­
ченное явление в физике твердого тела [16]. Оно возникает, когда энергия
Ферми резервуаров совпадает с собственной энергией мезоскопического устрой­
ства. Интересно исследовать аналогичное явление для бозонов. Для этой цели
во все уравнения включена отстройка от энергии нулевых колебаний δ, опреде­
ляющая локальную энергию в гамильтониане (4.3).

Как и в случае фермионов, для наблюдения этого эффекта необходи­
мы определенные условия. Критическим условием является то, что расстояние
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между энергетическими уровнями мезоскопического устройства меньше ши­
рины распределения Бозе—Эйнштейна в резервуарах. Для рассматриваемой
системы с двумя контактами эти условия выполняются, например, для пара­
метров, используемых в правом столбце рисунка 4.4. Таким образом, можно
ожидать резонансного поведения стационарного тока при изменении отстройки
δ. Численное моделирование динамики системы полностью подтверждает это
предположение, как показано пунктирной линией на рисуке 4.7). Следует от­
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Рисунок 4.7 — Стационарный ток как функция отстройки δ. Остальные пара­
метры: β = 10, γ = 0.2 и ε = 0.4. Пунктирная линия соответствует решению
для одночастичной матрицы плотности (SPDM). Сплошные линии – решения,
полученные в псевдоклассичесском приближении для разных значений макро­
скопической константы взаимодействия 𝑔 (усреднение производилось по 6300

различным реализациям случайного процесса).

метить, что положения резонансных пиков несколько смещены относительно
ожидаемых значений δ = −(ω𝑖 + 𝐽). Это смещение увеличивается с ростом ε

или уменьшением γ и обусловлено обратным влиянием цепочки на контакты.



65

4.6.2 Влияние межчастичного взаимодействия

Теперь исследуем влияние межчастичных взаимодействий на наблюдае­
мый эффект резонансного туннелирования. Для этого используем псевдоклас­
сический подход, в котором межчастичные взаимодействия характеризуются
макроскопической константой взаимодействия 𝑔 = 𝑈𝑛̄, где в качестве пара­
метра 𝑛̄ выбрана средняя плотность частиц в левом резервуаре 𝑛̄L. Известно,
что псевдоклассическое приближение является точным для 𝑔 = 0 и в пределе
𝑛̄ → ∞ при 𝑈 = 𝑔/𝑛̄ → 0. Таким образом, для фиксированного 𝑛̄ метод дает
корректные результаты лишь до некоторого критического значения 𝑈 .

Синяя сплошная линия на рис. 4.7 соответствует 𝑔 = 0, где отклонение от
пунктирной линии обусловлено конечным числом реализаций стохастической
силы. Это отклонение указывает на статистическую ошибку для выбранного
ансамбля из 6300 реализаций. Штриховая и штрих-пунктирная линии на ри­
сунке 4.7 соответствуют 𝑔 ̸= 0. Видно, что с увеличением 𝑔 резонансные пики
смещаются в сторону меньших значений δ, одновременно происходит размыва­
ние резонансной картины.

Чтобы объяснить наблюдаемый эффект, следует проанализировать не
спектральную плотность осцилляторов, как это делалось ранее, а спектральную
плотность 𝑃ℓ(ν) собственных мод цепочки при 𝑔 ̸= 0. Этот анализ показывает,
что при малых значениях 𝑔 ⩽ 0.1 стохастическая сила χ(𝑡) в основном воз­
буждает коллективные моды системы. Более подробно, для 𝑔 ̸= 0 и δ ̸= 0

уравнение для осцилляторов преобразуется к виду:

𝑖𝑎̇ℓ = (δ+ 𝑔|𝑎𝑙|2)𝑎ℓ −
𝐽𝑠
2
(𝑎ℓ−1 + 𝑎ℓ+1). (4.34)

Перепишем уравнение (4.34) в представлении собственных мод (4.27):

𝑖𝑋̇(𝑖) = (δ+ω𝑖 + 𝑔𝐴𝑖|𝑋(𝑖)|2)𝑋(𝑖) + 𝑔
∑︁
𝑗,𝑘 ̸=𝑖

𝐵𝑖,𝑗,𝑘𝑋
(𝑗)𝑋(𝑘)(𝑋(𝑘))*, (4.35)

где 𝐴𝑖 и 𝐵𝑖,𝑗,𝑘 — константы порядка единицы. При 𝑔 = 0 узкополосная
стохастическая сила возбуждает каждую моду независимо. Например, для
параметров кривых на рисунке 4.7 и δ = −0.5 возбуждается мода 𝑋(2) =

(−1/2,−1/2, 0, 1/2, 1/2), а для δ = −1— мода 𝑋(3) = (1/
√
3, 0,−1/

√
3, 0, 1/

√
3).

В случае, когда 𝑔 ̸= 0 не превышает некоторого критического значения, а ам­
плитуда одной из мод доминирует над остальными, взаимным влиянием мод,
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Рисунок 4.8 — Спектральная плотность собственной моды 𝑋(2)(𝑡) для 𝑔 = 0 и
𝑔 > 0 и δ = −0.5 в (a) линейном и (б) логарифмическом масштабах. Остальные

парметры как на рисунке 4.7.

которое описывается последним членом в уравнении (4.35), можно пренебречь.
Это позволяет свести задачу к модели одного стохастически возбуждаемого
нелинейного осциллятора. Основными эффектами в такой системе являются
уширение спектральной линии, сопровождающееся уменьшением её высоты, а
также сдвиг всей полосы спектральной плотности в сторону положительных
частот при 𝑔 > 0, как показано на рисунке 4.8. Это объясняет уменьшение тока
при фиксированном δ = −0.5, наблюдаемое на рисунке 4.7. Важно отметить,
что сдвиг может быть скомпенсирован подстройкой δ к новому значению, что
приводит к более эффективному возбуждению выбранной моды и, как след­
ствие, к появлению пика пропускания при этом значении отстройки.
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4.7 Выводы по главе

В настоящей главе в рамках немарковской открытой модели Бозе—Хаб­
барда исследован стационарный ток бозонных носителей через одномерную
цепочку, соединённую с двумя резервуарами частиц, моделируемыми как за­
мкнутые в кольцо цепочки в приближении сильной связи. Обнаружено и
исследовано явление резонансного туннелирования, при котором стационарный
ток через цепочку резко возрастает, когда напряжение затвора δ настраивает
одну из собственных частот цепочки в резонанс с пиком низкотемператур­
ной спектральной плотности шума. Таким образом, продемонстрировано, что
для бозонных носителей, аналогично фермионным, возможна резонансное
туннелирование через мезоскопическое устройство. Исследовано влияние меж­
частичного взаимодействия на резонансное туннелирование. Показано, что
взаимодействие вызывает сдвиг и уширение резонансных пиков тока в зави­
симости от напряжения затвора, что в конечном итоге приводит к размыванию
резонансной картины при увеличении константы взаимодействия 𝑔. Прове­
денное исследование расширяет понимание квантового транспорта бозонных
носителей, демонстрируя богатую физику, связанную с немарковскими эффек­
тами, бозе-конденсацией в резервуарах и ролью межчастичных взаимодействий.

Результаты главы опубликованы в работах [129; 133].
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Глава 5. Открытая одномерная цепочка с сохраняющимся числом
частиц

Как уже было отмечено в предыдущих главах, центральным вопросом,
представляющим как теоретический, так и экспериментальный интерес, явля­
ется стационарный ток бозонных частиц через цепочку и его зависимость от
силы межчастичного взаимодействия. Свойства замкнутой системы Бозе-Хаб­
барда критически зависят от отношения матричного элемента перескока 𝐽 к
константе взаимодействия 𝑈 [106—108].

В частности, при целом значении числа заполнения 𝑛̄ = 𝑁/𝐿 в систе­
ме наблюдается квантовый фазовый переход для основного состояния между
сверхтекучим состоянием (𝐽 ≫ 𝑈) и состоянием изолятора Мотта (𝑈 ≫ 𝐽).
Возбужденные состояния системы демонстрируют качественное изменение от
регулярных к хаотическим при увеличении взаимодействия. Естественно ожи­
дать, что стационарный ток в открытой цепочке Бозе-Хаббарда также должен
существенно зависеть от константы взаимодействия.

В главе 2 в рамках псевдоклассического приближения было показано, что
даже слабое взаимодействие приводит к существенному подавлению стационар­
ного тока. Для дальнейшего исследования этого явления в настоящей главе
рассматривается специфическая модель Бозе—Хаббарда с граничным возбужде­
нием, сохраняющая полное число частиц в системе. Хотя предложенная модель
не имеет прямой экспериментальной реализации, она позволяет провести де­
тальный сравнительный анализ с замкнутой системой Бозе—Хаббарда. Важно
отметить, что в отличие от подхода предыдущих глав, основанного на псевдо­
классическом приближении, данная модель исследуется точными методами.

В данной главе показано, что спектр стационарной матрицы плотности
демонстрирует те же структурные изменения, что и энергетический спектр
гамильтониана Бозе—Хаббарда при изменении управляющего параметра, в дан­
ном случае – константы взаимодействия 𝑈 . Обнаруженные изменения в стати­
стике спектра находят непосредственное отражение в поведении стационарного
тока через цепочку, который, в отличие от статистических характеристик спек­
тра, является непосредственно измеримой величиной.

Важным преимуществом предложенной модели является возможность
точного численного анализа относительно больших систем, что затруднительно
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для стандартной модели с граничным возбуждением. Например, для стандарт­
ной модели с 𝐿 = 10 и средним числом частиц во всей цепочке ⟨𝑁⟩ = 5

необходимо учитывать флуктуации числа частиц как минимум до 𝑁max = 10,
что приводит к матрице плотности размером 184 756×184 756. В то же время в
рассматриваемой в данной главе модели с фиксированным 𝑁 = 5 размер матри­
цы составляет всего 2002×2002, что делает задачу вычислительно более легкой.

5.1 Модель

5.1.1 Основные уравнения

Рассмотрим цепочку Бозе—Хаббарда длины 𝐿 с некогерентной связью
между первым и 𝐿-м узлами, см. рисунок 5.1. Эволюция матрицы плотности
системы ̂︀ℛ описывается основным кинетическим уравнением вида

𝜕 ̂︀ℛ
𝜕𝑡

= −𝑖[ ̂︀ℋ, ̂︀ℛ]− Γ1
̂︀ℒ1( ̂︀ℛ)− Γ2

̂︀ℒ2( ̂︀ℛ), (5.1)

где ̂︀ℋ – гамильтониан Бозе—Хаббарда, определяемый выражением (1.18) с
𝐸ℓ = 0.

Рисунок 5.1 — Схематическое изображение цепочки Бозе—Хаббарда с реализа­
цией эффекта "батарейки"через асимметричную некогерентную связь между
первым и последним узлами. Стрелки иллюстрируют направления потоков ча­

стиц, индуцируемых операторами ̂︀ℒ1 и ̂︀ℒ2.

Для описания некогерентной связи между первым и 𝐿-м узлами исполь­
зуются супероператоры Линдблада, которые задаются следующими выраже­
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ниями:

̂︀ℒ1( ̂︀ℛ) = ̂︀𝑉 †̂︀𝑉 ̂︀ℛ+ ̂︀ℛ̂︀𝑉 †̂︀𝑉 − 2̂︀𝑉 ̂︀ℛ̂︀𝑉 †, (5.2)̂︀ℒ2( ̂︀ℛ) = ̂︀𝑉 ̂︀𝑉 † ̂︀ℛ+ ̂︀ℛ̂︀𝑉 ̂︀𝑉 † − 2̂︀𝑉 † ̂︀ℛ̂︀𝑉 , (5.3)

где Γ1,2 – константы релаксации, которые в данной модели понимаются как
скорость обмена частицами, а оператор ̂︀𝑉 определён как ̂︀𝑉 = 𝑎̂†1𝑎̂𝐿 [85; 134; 135].

Физический смысл этих операторов заключается в следующем: суперопе­
ратор ̂︀ℒ1( ̂︀ℛ) индуцирует некогерентный перенос бозонов от последнего узла
к первому, в то время как супероператор ̂︀ℒ2( ̂︀ℛ) ответственен за перенос в об­
ратном направлении. Данный некогерентный процесс можно интерпретировать
как туннелирование, опосредованное взаимодействием с внешним резервуаром.

Ключевой момент заключается в том, что при Γ1 ̸= Γ2 в системе возни­
кает ненулевой стационарный ток. Направление тока зависит от того, какая из
констант больше: если Γ1 > Γ2, то процесс переброса частиц с последнего узла
на первый преобладает над обратным процессом, что создаёт результирующий
ток в направлении от первого сайта к последнему. Именно асимметрия в ско­
ростях этих двух процессов, ∆Γ = Γ1 − Γ2, выполняет роль "батарейки"или
эффективной разности химических потенциалов, поддерживающей ток в цепи.
По аналогии с электронными устройствами, эта асимметрия создаёт постоян­
ный ток, подобно тому, как батарея создаёт напряжение в электрической цепи.
Основной интерес представляет стационарный ток 𝐼 через цепочку, определяе­
мый как 𝐼 = Tr[𝐼 ̂︀ℛ], где ̂︀ℛ = ̂︀ℛ(𝑡 → ∞) – стационарная матрица плотности,
а оператор тока задаётся стандартным выражением:

𝐼 =
𝐽

2𝑖

𝐿−1∑︁
ℓ=1

(𝑎̂†ℓ+1𝑎̂ℓ − h.c.). (5.4)

5.1.2 Режим линейного отклика

Заметим, что в случае симметричной связи, Γ1 = Γ2, стационарная
матрица плотности является максимально смешанным состоянием и пропорци­
ональна единичной матрице: ̂︀ℛ = 1̂/𝒩 , где 𝒩 ×𝒩 – размерность гильбертова
пространства. В этом состоянии ток отсутствует.
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Для создания ненулевого тока мы фокусируемся на режиме линейного
отклика, полагая:

Γ1 = Γ +∆Γ/2, Γ2 = Γ−∆Γ/2, где ∆Γ≪ Γ. (5.5)

В этом приближении матрица плотности может быть представлена в виде:

̂︀ℛ =
1̂

𝒩
+∆Γ ̂︀ℛ(1), (5.6)

где Tr[ ̂︀ℛ(1)] = 0. Подстановка (5.6) в основное кинетическое уравнение (5.1)
дает:

−𝑖[ ̂︀ℋ, ̂︀ℛ(1)]− Γ[ℒ1( ̂︀ℛ(1)) + ℒ2( ̂︀ℛ(1))]− 2(𝑛̂𝐿 − 𝑛̂1)

𝒩
= 𝑂(∆Γ). (5.7)

В пределе ∆Γ → 0 уравнение (5.7) значительно упрощается и преобразуется
в уравнение на элементы неизвестной матрицы ̂︀ℛ(1), которую далее будем на­
зывать неравновесной матрицей плотности. В нашем численном подходе мы не
решаем это уравнение непосредственно, а эволюционируем матрицу плотности̂︀ℛ(𝑡) в соответствии с уравнением (5.1) и используем уравнение (5.7) для про­
верки достижения истинного стационарного состояния. Этот метод оказывается
более эффективным, чем прямое решение алгебраического уравнения.

5.2 Спектральные свойства стационарной матрицы плотности

5.2.1 Анализ в базисе оператора тока

Поскольку основной интерес представляет стационарный ток через цепоч­
ку, мы анализируем матрицу ̂︀ℛ(1) в базисе собственных состояний оператора
тока:

𝐼 =
𝒩∑︁
𝑗=1

σ𝑗|Φ𝑗⟩⟨Φ𝑗|. (5.8)

Отметим, что при отсутствии взаимодействия 𝑈 = 0 в гамильтониане (1.18)
справедливо следующие коммутационное соотношение:

−𝑖[ ̂︀ℋ, ̂︀𝐼]− (𝑛̂𝐿 − 𝑛̂1)

2
= 0. (5.9)
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На рисунке 5.2 представлены два примера матрицы ̂︀ℛ(1) в этом базисе для
случаев 𝑈 = 0 (левая панель) и 𝑈 = 𝐽 (правая панель). Качественное разли­
чие между этими случаями хорошо видно из рисунков. В случае отсутствия
взаимодействия матрица имеет регулярную структуру и представляет собой
диагональную матрицу. Напротив, при включении взаимодействия проявляется
сложная нерегулярная картина с значительными недиагональными элемента­
ми, свидетельствующая о сильном перемешивании состояний.
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Рисунок 5.2 — Абсолютные значения матричных элементов матрицы ̂︀ℛ(1) в
базисе оператора тока. Параметры системы: 𝐿 = 6, 𝑁 = 3 (размерность гиль­
бертова пространства 𝒩 = 56), 𝐽 = 1, Γ = 0.04 (∆Γ = 0.002), и 𝑈 = 0 (слева)

и 𝑈 = 1 (справа). Верхний предел цветовой оси равен 0.2.

5.2.2 Переход к квантовому хаосу

Известно, что гамильтониан Бозе—Хаббарда (1.18) проявляет переход от
регулярной динамики к квантовому хаосу при увеличении 𝑈 [107; 108]. Мы
ожидаем аналогичный переход для неравновесной матрицы плотности, что
подтверждается визуальным анализом матриц на рисунке 5.2 и результатами
исследований гранично возбужденных спиновых цепочек [136; 137].

Классический подход к определению квантового хаоса в открытых си­
стемах основан на анализе спектра супероператора Лиувилля L ( ̂︀ℛ) [134;
136—140], который задаёт эволюцию матрицы плотности: L ( ̂︀ℛ) = −𝑖[ ̂︀ℋ, ̂︀ℛ] +∑︀

𝑗 𝒟[̂︀𝐿𝑗]( ̂︀ℛ). Однако в данной главе мы фокусируемся на непосредственном
исследовании спектра неравновесной матрицы плотности (5.10), поскольку
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именно она содержит полную информацию о состоянии открытой многочастич­
ной системы. Таким образом, мы исследуем спектр и собственные состояния:

̂︀ℛ(1) =
𝒩∑︁
𝑗=1

λ𝑗|Ψ𝑗⟩⟨Ψ𝑗|. (5.10)

В дальнейшем мы ограничиваемся случаем Γ ≪ 𝐽 . При 𝑈 = 0 состояния |Ψ𝑗⟩
практически совпадают с собственными состояниями оператора тока |Φ𝑗⟩, а
собственные значения связаны соотношением:

λ𝑗 ≈ 4σ𝑗/𝒩 . (5.11)

Чтобы убедиться в этом, масштабируем матрицу плотности ̂︀ℛ(1) → 𝒩 /4 · ̂︀ℛ(1)

и положим ∆Γ = 0 в уравнении (5.7). Полученное алгебраическое уравнение
отличается от коммутационного соотношения (5.9), справедливого для 𝑈 = 0,
лишь малым членом ∼ Γ, который может быть учтен в рамках теории возму­
щений. Как и ожидалось, применение теории возмущений снимает вырождение
собственных значений оператора тока, см. вставку (б) на рисунке 5.3). Пурпур­
ная ступенчатая кривая на рисунке 5.3 иллюстрирует случай 𝑈 ̸= 0. Видно,
что ширина спектра увеличивается с ростом 𝑈 , что свидетельствует о сильном
отклонении системы от равновесия. Однако основное различие заключается не
в ширине спектра, а в его статистических свойствах.

5.2.3 Статистика спектра

Следуя стандартной процедуре анализа спектральных свойств, мы иссле­
довали распределения расстояний между ближайшими уровнями 𝑠 = (λ𝑗+1 −
λ𝑗)𝑓(λ𝑗), где 𝑓(λ) – средняя плотность состояний. На рисунке 5.4 показано ку­
мулятивное распределение уровней спектра

𝐼(𝑠) =

∫︁ 𝑠

0

𝑑𝑠′𝑃 (𝑠′), (5.12)

матрицы ̂︀ℛ(1) для центральной энергетической области, охватывающей 60% со­
стояний (сплошная линия), в сравнении с распределением Пуассона (штриховая
линия):

𝑃P(𝑠) = 𝑒−𝑠, (5.13)
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Рисунок 5.3 — Масштабированные собственные значения матрицы ̂︀ℛ(1) для 𝑈 =

0 (красная линия) и 𝑈 = 1 (фиолетовая линия) по сравнению с собственными
значениями оператора тока (синяя линия). Параметры: 𝐿 = 8,𝑁 = 4 (𝒩 = 330),
𝐽 = 1, и Γ = 0.04 (∆Γ = 0.002). На вставках показано увеличенное изображение

центральной области спектра.

и распределением Вигнера—Дайсона [141] (штрихпунктирная линия) для гаус­
сова унитарного ансамбля (ГУА):

𝑃WD(𝑠) =
32𝑠2

π2
𝑒−4𝑠

2/π. (5.14)

Для 𝑈 = 0 кумулятивное распределение уровней спектра 𝐼(𝑠) прекрас­
но согласуется с кумулятивным распределением Пуассона, рисунок 5.4(а), что
и ожидалось для регулярной системы. Напротив, для 𝑈 = 𝐽 наблюдается хо­
рошее согласие с распределением ГУА Вигнера—Дайсона, рисунок 5.4(б). Это
означает, что собственные значения λ𝑗 матрицы ̂︀ℛ(1) отталкиваются друг от
друга, а распределение расстояний между ними 𝑃 (𝑠) принимает универсальную
форму Вигнера—Дайсона. Данная универсальность является ключевой чертой
квантового хаоса [142; 143]: глобальная структура спектра перестает зависеть
от микроскопических деталей гамильтониана системы и подчиняется общим
статистическим закономерностям, характерным для широкого класса сложных
квантовых систем с нарушенной симметрией относительно обращения времени.
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Рисунок 5.4 — Сравнение кумулятивного распределения уровней спектра матри­
цы ̂︀ℛ(1) с кумулятивными распределениями Пуассона и ГУА Вигнера—Дайсона
для 𝑈 = 0 (а) и для 𝑈 = 1 (б). Другие параметры: 𝐿 = 10, 𝑁 = 5 (𝒩 = 2002),
и Γ = 0.04. Для статистического анализа взято 60% собственных значений из

центральной части спектра.

5.3 Стационарный ток и его зависимость от взаимодействия

Перейдем теперь к анализу стационарного тока 𝐼 через цепочку:

𝐼 = Tr[𝐼 ̂︀ℛ] = 𝒩∑︁
𝑗=1

λ𝑗⟨Ψ𝑗|𝐼|Ψ𝑗⟩ ≡
𝒩∑︁
𝑗=1

λ𝑗𝐼𝑗. (5.15)

В случае отсутствия межчастичных взаимодействий, используя уравнение
(5.11), можно получить следующее полуаналитическое выражение:

𝐼 = 4𝐽𝑁2∆Γ

∫︁ 1

0

σ2(𝑥)𝑑𝑥, (5.16)

где 𝑥 = 𝑗/𝒩 , а σ(𝑥) – обратная функция к интегрированной плотности состо­
яний оператора тока, интерполирующая синюю линию на рисунке 5.3. Таким



76

образом, как и интуитивно ожидается, для 𝑈 = 0 полный ток увеличивается
с числом частиц в системе. Случай 𝑈 ̸= 0 является более сложным и демон­
стрирует нетривиальное поведение. На рисунке 5.5 представлена полученная
численно зависимость стационарного тока от константы взаимодействия 𝑈 для
𝐿 = 6 и различного числа частиц 𝑁 . На рисунке 5.5(б) четко идентифици­
руется критическое значение 𝑈𝑐𝑟 = 𝑈𝑐𝑟(𝑛̄), 𝑛̄ = 𝑁/𝐿, выше которого ток резко
уменьшается. Это критическое взаимодействие отмечает переход от статистики
спектра Пуассона к статистике Вигнера—Дайсона для неравновесной матрицы
плотности ̂︀ℛ(1). Неожиданным результатом является то, что для 𝑈 ≫ 𝑈𝑐𝑟 ток
не только уменьшается, но и демонстрирует котринтуитивную зависимость от
числа частиц – с ростом 𝑁 ток уменьшается. Более того, мы обнаруживаем,
что для этих больших значений 𝑈 статистика спектра снова становится пуас­
соновской, что указывает на восстановление регулярности динамики в пределе
сильного взаимодействия.

Рисунок 5.5 — Полный ток как функция константы взаимодействия 𝑈 для трех
различных значений числа частиц 𝑁 = 2,3,4 в линейном (а) и логарифмическом

(б) масштабах. Параметры: 𝐿 = 6, Γ = 0.04 (∆Γ = 0.002).
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5.4 Фермионизация и локализация состояний

Наблюдаемое изменение статистики спектра и контринтуитивная зависи­
мость тока от числа частиц объясняются индуцированной взаимодействием
локализацией собственных состояний |Ψ𝑗⟩ и фермионизацией сильно взаи­
модействующих бозонных частиц [144]. Очевидным следствием локализации
собственных состояний является то, что среднее значение 𝐼𝑗 = ⟨Ψ𝑗|𝐼|Ψ𝑗⟩
стремится к нулю и строго равно нулю, если все бозоны занимают один
узел цепочки. На рисунке 5.6 показаны величины 𝐼𝑗 для (𝐿,𝑁) = (6,3) и
𝑈 = 0, 0.5, 10. Видно, что доля делокализованных состояний, поддерживающих
ток, уменьшается в пользу локализованных состояний, для которых 𝐼𝑗 ≈ 0.
Например, на рисунке 5.6(в) состояния, соответствующие минимальному и

Рисунок 5.6 — Величины 𝐼𝑗 = ⟨Ψ𝑗|̂︀𝐼|Ψ𝑗⟩ для 𝑈 = 0 (а), 𝑈 = 0.5 (б), и 𝑈 = 10

(в). Параметры системы: 𝐿 = 6, 𝑁 = 3, и Γ = 0.04 (∆Γ = 0.002).

максимальному собственным значениям, – это состояния |Ψ1⟩ ≈ |0,0,0,0,0,3⟩
и |Ψ𝒩 ⟩ ≈ |3,0,0,0,0,0⟩. Наряду с полностью локализованными состояниями,
присутствуют частично локализованные состояния и ряд делокализованных
состояний. Более детальный анализ этих состояний показывает, что они яв­
ляются суперпозицией состояний Фока, населенности узлов цепочки в которых
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равны либо нулю, либо единице. Поскольку это подпространство гильберто­
ва пространства соответствует гильбертову пространству локальных бозонов
(hardcore bosons), мы заключаем, что остаточная проводимость системы при
больших 𝑈 в основном обусловлена наличием локальных бозонов. Как извест­
но, спектральные и транспортные свойства локальных бозонов аналогичны
таковым для невзаимодействующих фермионов и, следовательно, они могут
поддерживать баллистический транспорт при сколь угодно больших 𝑈 , если
𝑁/𝐿 < 1 [144].

Мы также отмечаем, что появление локализованных состояний и ин­
тегрируемых состояний, связанных с локальными бозонами, согласуется с
наблюдаемым изменением распределения расстояний между уровнями от рас­
пределения Вигнера—Дайсона обратно к распределению Пуассона в пределе
больших 𝑈 . Это восстановление регулярной статистики спектра отражает фун­
даментальное свойство системы – переход к фермионизированному режиму,
где сильно взаимодействующие бозоны ведут себя как невзаимодействующие
фермионы.

5.5 Выводы по главе

В настоящей главе представлена модель квантового транспорта бозонных
частиц через цепочку Бозе—Хаббарда, которая сохраняет число частиц в систе­
ме. Подобно стандартной транспортной модели, где цепочка Бозе—Хаббарда
соединяет два резервуара частиц с разными химическими потенциалами, вве­
денная модель демонстрирует различные транспортные режимы в зависимости
от отношения между константой туннелирования 𝐽 и константой взаимодей­
ствия 𝑈 в гамильтониане Бозе—Хаббарда (1.18). Показано, что для 𝑈 ∼ 𝐽

стационарный ток бозонных частиц резко уменьшается по сравнению со случа­
ем 𝑈 = 0. В главе 2, которая основана на работе [82], уже наблюдалось подобное
поведение в том же диапазоне значений параметров (𝑈 ∼ 𝐽). Там было показано
с помощью псевдоклассического приближения, что уменьшение тока соответ­
ствует переходу от баллистического режима транспорта к диффузионному. В
данной же главе, при использовании строгого квантового подхода, показано,
что уменьшение тока сопровождается переходом от регулярной динамики к
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квантовому хаосу, что проявляется в изменении статистики спектра матрицы
плотности от распределения Пуассона к распределению Вигнера—Дайсона. Это
позволяет сделать следующее заключение: увеличение межчастичного взаимо­
действия в гранично-возбуждаемых бозонных системах приводит к переходу от
баллистического режима транспорта к диффузионному, что является следстви­
ем перехода от регулярной динамики к хаотической. В рамках введенной модели
мы также наблюдали интересный эффект – остаточную проводимость, обуслов­
ленную фермионизацией бозонных частиц. В пределе сильного взаимодействия
(𝑈 ≫ 𝐽) система демонстрирует восстановление регулярной динамики, про­
являющиеся в переходе к пуассоновской статистике спектра, и уменьшение
тока с ростом числа частиц. Это явление представляет собой чисто квантовый
эффект, который не может быть описан в рамках классического или псевдо­
классического подходов, рассмотренных в предыдущих главах. Полученные
результаты демонстрируют глубокую связь между статистическими свойствами
неравновесной матрицы плотности и транспортными характеристиками систе­
мы, открывая новые перспективы для исследования сложных квантовых систем
в условиях сильного взаимодействия и диссипации. Предложенная модель и
методика анализа могут быть применены к другим классам гранично-воз­
буждаемых систем, что представляет значительный интерес для дальнейших
исследований.

Результаты главы опубликованы в работах [86; 145].
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Заключение

Настоящая диссертационная работа посвящена теоретическому исследо­
ванию квантового транспорта бозонных частиц в низкоразмерных системах,
в частности, в открытых цепочках Бозе-Хаббарда и их обобщениях. Были
изучены различные аспекты данной проблемы, начиная от перехода между
баллистическим и диффузионным режимами транспорта под влиянием меж­
частичного взаимодействия, заканчивая ролью синтетических калибровочных
полей, немарковских эффектов и квантового хаоса в неравновесной динамике.
Основные результаты работы заключаются в следующем.

1. Для одномерной цепочки Бозе-Хаббарда, соединяющей два атомных
резервуара, в рамках псевдоклассического приближения показано, что
умеренное межчастичное взаимодействие (𝑈 ∼ 𝐽) приводит к зна­
чительному подавлению стационарного тока и смене транспортного
режима. Анализ спектральных плотностей осцилляторов выявил раз­
рушение коллективных мод и исчезновение резонансных пиков, что
свидетельствует о переходе от баллистического переноса к диффузи­
онному механизму.

2. Исследована ромбическая цепочка под действием внешнего искуствен­
ного магнитного поля. Показано, что в отсутствие взаимодействия ток
демонстрирует интерференционную зависимость ∼ cos2Φ/2 и полно­
стью подавляется при Φ = π из-за деструктивной интерференции.
При Φ = 0 получено аналитическое выражение. Показано, что меж­
частичное взаимодействие разрушает локализацию, индуцированную
магнитным потоком, и восстанавливает ток в области Φ ≈ π.

3. Предложена немарковская модель открытой системы с контактами, ко­
торая адекватно описывает низкотемпературные резервуары близкие к
бозе-конденсации. Обнаружено явление резонансного туннелирования
бозонов, аналогичное фермионному случаю, и показано, что меж­
частичное взаимодействие вызывает сдвиг и уширение резонансных
пиков, вплоть до полного размытия картины при увеличении взаимо­
действия.

4. На примере открытой модели с сохранением числа частиц продемон­
стрировано, что увеличение межчастичного взаимодействия приводит
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к переходу от интегрируемой динамики (𝑈 = 0) к квантовому хаосу
(𝑈 ∼ 𝐽), что отражается в изменении статистики спектра матрицы
плотности от распределения Пуассона к распределению Вигнера-Дай­
сона. В пределе сильного взаимодействия (𝑈 ≫ 𝐽) наблюдается
фермионизация бозонов, приводящая к восстановлению интегрируемо­
сти, и сопровождающаяся нетривиальной зависимостью тока от числа
частиц.

5. Результаты, полученные для моделей из глав 2 и 5, показывают,
что увеличение межчастичного взаимодействия в гранично-возбуждае­
мых бозонных системах вызывает переход от баллистического режима
транспорта к диффузионному. Этот переход является следствием
перехода от регулярной динамики к хаотической — как в смысле клас­
сического, так и в смысле квантового хаоса.

Предложенные модели и предсказания потенциально могут быть прове­
рены в экспериментах с ультрахолодными атомами в оптических решетках, а
также на платформах, использующих сверхпроводящие цепи либо фотонные
структуры. Проведенное исследование вносит вклад в фундаментальное пони­
мание квантового транспорта в системах с взаимодействующими частицами и
открывает новые направления для изучения сложных неравновесных кванто­
вых явлений.
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Список сокращений и условных обозначений

ρ̂ одночастичная матрица плотности, SPDM
𝑎̂†ℓ, 𝑎̂ℓ бозонные операторы рождения и уничтожения действующие

на узле с индексом ℓ

𝐻̂ одночастичный гамильтониан̂︀ℋ многочастичный гамильтониан̂︀ℒ супероператор Линдблада̂︀ℛ матрица плотности
𝑎ℓ комплексная амплитуда ℓ-го осциллятора
𝐻 классический гамильтониан
𝐿 длина цепочки
BBR Bogoliubov back-reaction method
RWA rotating-wave approximation, приближение вращающейся вол­

ны
SPDM single-particle density matrix, одночастичная матрица плотно­

сти
БЭК конденсат Бозе-Эйнштейна
ГУА гауссов унитарный ансамбль
ЭДС электродвижущая сила
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143. Stöckmann, H.-J. Quantum Chaos: An Introduction [Текст] /
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