05.2 Многослойные пленки Co/Pd с нанокристаллическими и аморфными слоями Co: коэрцитивная сила, случайная анизотропия и обменная связь зерен

© Р.С. Исхаков, С.В. Комогорцев, А.Д. Балаев, Л.А. Чеканова

Институт физики им. Л.В. Киренского СО РАН, Красноярск E-mail: rauf@iph.krasn.ru

Поступило в Редакцию 18 января 2002 г.

Проведены независимые измерения намагниченности насыщения M_s , константы обменного взаимодействия A, поля локальной магнитной анизотропии H_a , корреляционного радиуса случайной анизотропии R_c и коэрцитивной силы мультислойных пленок Co/Pd с аморфными и нанокристаллическими слоями Co. Показано, что изменение коэрцитивной силы пленок Co/Pd $H_c(t_{Co})$ при изменении толщины слоя кобальта (t_{Co}) обусловлено изменениями характеристик магнитной микроструктуры. Основной же причиной изменения этих характеристик: ферромагнитного корреляционного радиуса R_f и средней анизотропии магнитного блока $\langle K \rangle$ в мультислойных пленках Co/Pd, как оказалось, является изменение константы обменного взамодействия $A(t_{Co})$.

Случайная магнитная анизотропия (СМА) определяет магнитную структуру нанокристаллических и аморфных ферромагнетиков. Эта структура является результатом конкуренции упорядочивающего действия обменных сил и локальной случайной анизотропии K, разрушающей дальний ферромагнитный порядок [1]. В таких матералах ферромагнитный порядок реализуется на характерных корреляционных длинах $R_f = R_c (H_{ex}/D^{1/2}H_a)^2 (H_a = 2K/M_s$ — поле локальной магнитной анизотропии, R_c — корреляционынй радиус случайной анизотропии, H_{ex} — обменное поле, D — симметрийный числовой коэффициент, равный 1/15, для одноосной анизотропии, M_s — намагниченность насыщения), так что магнитных блоков [1,2]. Размер блока равен $2R_f$, средняя анизотропия в блоке $\langle K \rangle = K/N^{1/2} = K(R_c/R_f)^{3/2}$, орт этой анизотропии **n** ориентирован случайным образом. В настоящее время

37

исследователи-магнитологи считают, что именно данная магнитная структура и обусловливает наблюдаемые величины магнитомягких характеристик аморфных и нанокристаллических сплавов [2-4]. Отметим, что анализ поведения коэрцитивной силы Не в рамках модели СМА в основном направлен на исследование зависимостей H_c от размера нанозерна: $H_c(R_c)$ [2–4], т.е. в указанных работах считается, что анизотропия $K(R_c)$, обмен $A(R_c)$, намагниченность насыщения $M_s(R_c)$ const либо этими зависимостями можно пренебречь. Однако сегодня имеются все предпосылки для проведения комплексных измерений всех параметров, входящих в теоретические выражения для $H_c(R_c, H_a, A, A)$ M_s), и выявления соответствующих зависимостей. Так, для изучения СМА и магнитных блоков применяют методы малоугловой дифракции нейтронов [5-7], метод измерения кривых намагничивания в области приближения намагниченности к насыщению [8-10]. Для измерений константы обменной связи широко используют такие методики, как спин-волновой резонанс СВР [11], закон Блоха T^{3/2} [12].

Результаты предварительного исследования кривых намагничивания M(H) мультислойных пленок Co/Pd [9] показали, что эти пленки характеризуются двумерной неоднородностью магнитной анизотропии. Так, оказалось, что в диапазоне полей 5–25 kOe экспериментальная кривая M(H) описывается выражением

$$\frac{\Delta M}{M_s} = \frac{D^{1/2} \cdot \langle H_a \rangle}{H},\tag{1}$$

что соответствует ферромагнетку с размерностью неоднородности анизотропии d = 2 и реализации на эксперименте условия $H < H_{ex}$. Из экспериментальной кривой M(H) с помощью выражения (1) были определены величины $\langle H_a \rangle$ и $R_f = (A/D^{1/2} \langle K \rangle)^{1/2}$ ($\langle K \rangle = M_s \langle H_a \rangle/2$, коэффициент D выбран равным 1/15 [8]). При этом оказалось, что величина H_c прямо коррелирует с величиной $\langle H_a \rangle$ (рис. 1). Последнее означает, что $\langle H_a \rangle$ в исследованных пленках Co/Pd играет роль эффективной анизотропии. Следовательно, для анализа этой эффективной анизотропии и обусловленной ею коэрцитивной силы применимы теоретические выражения, полученные в рамках модели CMA. Описанный выше способ измерения параметров $\langle H_a \rangle$ и R_f , однако, не вскрывает взаимосвязи изменений этих параметров с изменениями основных магнитных констант (H_a , A, M_s) и основного параметра наноструктуры (R_c). Действительно, теоретические выражения для $\langle H_a \rangle$

и R_f аморфного и нанокристаллического ферромагнетика с двумерными неоднородностями магнитной анизотропии таковы [9]:

$$R_f = \frac{2A}{\sqrt{D} H_a M_s R_c},\tag{2}$$

$$\langle H_a \rangle = \frac{\sqrt{D} H_a^2 M_s R_c^2}{2A}.$$
 (3)

Согласно выражению (3), при условии равноосности зерен ($2R_e = t_{Co}$, где t_{Co} — толщина слоя кобальта) и постоянстве параметров H_a , A, M_s , величины $\langle H_a \rangle$ и H_c должны возрастать пропорционально t_{Co}^2 . Экспериментальные же зависимости $\langle H_a \rangle$ и H_c описываются убывающими функциями от t_{Co} (рис. 1, a, b).

В данной работе мы провели независимые измерения намагниченности насыщения M_s , константы обменного взаимодействия A, поля локальной магнитной анизотропии H_a , корреляционного радиуса анизотропии R_c и коэрцитивной силы H_e мультислойных пленок Co/Pd с аморфными и нанокристаллическими слоями Co. Цель этих измерений — выявить вклад изменения каждого из параметров в изменение значений характеристик магнитной микроструктуры R_f и $\langle H_a \rangle$, а следовательно и вклад в изменение величины H_c .

Измерение термомагнитных кривых и кривых намагничивания тонких ферромагнитных пленок проводилось с помощью автоматизированного вибрационного магнитометра со сверхпроводящим соленоидом в диапазоне температур 0–200 К и в полях от 0 до 30 kOe.

Мультислойные пленки Co/Pd получены методом химического осаждения на стеклянные подложки. Исследовались две серии пленок: 1) $[Co_{93}P_7(t_{Co})/Pd(14 \text{ Å})]_{20}$ (где $t_{Co} = 6$, 30; 45; 55; 80 Å) и $[Co_{90}P_{10}(t_{Co})/Pd(14 \text{ Å})]_{20}$ (где $t_{Co} = 20$; 45; 60; 65; 115 Å). Малые добавки фосфора в слоях кобальта мультислойных плкенок Co/Pd здесь использовались для получения ферромагнитных слоев в виде метастабильных твердых растворов Co(P) с различной структурой ближнего порядка [13]. Так, в работе [13] установлено, что в слоях Co(P) при концентрациях 5–8 at.% Р реализуется ГЦК структура, свыше 9 at.% Р — слои Co находятся в аморфном состоянии.

Зависимость M(T) мультислойных пленок Co/Pd в интервале температур 50–200 К описывалась уравнением

$$M(T) = M_{s0}(1 - BT^{3/2}).$$
(4)

Рис. 1. Микромагнитные параметры $\langle H_a \rangle$, R_f (1 — величины определены из экспериментальной кривой M(H) с помощью выражения (1) [9]; 2,3 — величины вычислены из формул (2), (3)) и коэрцитивная сила H_c мультислойных пленок Co/Pd: $a - [Co_{90}P_{10}(t_{Co})/Pd(14 Å)]_{20}$; $b - [Co_{93}P_7(t_{Co})/Pd(14 Å)]_{20}$.

Величины намагниченности M_{s0} и константы A, пересчитанной из константы Блоха B по формуле

$$A = \frac{k_B}{8\pi} \left(\frac{g\mu_B}{M_{s0}}\right)^{1/3} \left(\frac{2.612}{B}\right)^{2/3},$$
 (5)

приведены в таблице.

	t _{Co} , Å	A, 10^{-6} erg/cm ³	M _s , Gs	H_c , Oe	$R_c,$ Å	$D^{1/2}H_a$, kOe
Нанокристаллический	30	0.37	800	49	21	2
$[Co_{93}P_7(t_{Co})/Pd(14\text{\AA})]_{20}$	45	0.63	870	34	26	1.4
	55	0.92	885	28	30	2.1
	80	0.93	914	11	26	1.5
Аморфный	20	0.17	483	300	18	3.3
$[\text{Co}_{90}\text{P}_{10}(t_{\text{Co}})/\text{Pd}(14\text{\AA})]_{20}$	45	0.34	720	85	18	2.4
	60	0.51	916	76	24	2.2
	65	0.62	913	76	25	2.2
	115	0.63	888	33	26	1.6

Основные магнитные константы, параметры случайной анизотропии, магнитной микроструктуры и коэрцитивная сила пленок Co/Pd с аморфными и нанокристаллическими слоями

Для определения параметров H_a и R_c , характеризующих ориентационную неоднородность анизотропии, необходимо измерить кривую намагничивания как в полях, меньших обменного поля H_{ex} , так и в полях, существенно превышающих H_{ex} , т. е. экспериментально определить две асимптоты M(H). Дело в том, что в полях $H > H_{ex}$ приближение намагниченности к насыщению осуществляется по закону:

$$\frac{\Delta M}{M_s} = \left(\frac{D^{1/2} \cdot H_a}{H}\right)^2. \tag{6}$$

Наблюдая этот асимптотический участок кривой M(H), определяют величину $D^{1/2}H_a$. Величину поля, при которой асимптотический режим, описываемый уравнением (1), переходит к режиму, описываемому уравнением (6): $H_{ex} = 2A/MR_c^2$, в дальнейшем используют для вычисления величины R_c .

Как было отмечено выше, для мультислойных пленок Co/Pd величина H_{ex} оказалась порядка 20–25 kOe, что очень близко к величине максимальных полей, использованных в нашем эксперименте. Таким

образом, непосредственное измерение H_a и R_c из асимптотических режимов, определяемых выражениями (1) и (6), в данном случае невозможно. Однако в полях 25–30 kOe для наших образцов наблюдались некоторые отклонения экспериментальной кривой M(H) от степенной зависимости ($M(H) \sim H^{-1}$), связанные с началом перехода магнитной системы в этих пленках к режиму, описываемому выражением (6). Это позволило нам для определения параметров H_a и R_c применить аппроксимацию участков кривой M(H) в полях от 5 до 30 kOe теоретической зависимостью, полученной в работе [14] для двумерных неоднородностей анизотропии. Это аналитическое выражение (закон приближения намагниченности к насыщению) в случае d = 2 имеет вид:

$$\frac{\Delta M(H)}{M_s} = \frac{DH_a^2}{H \cdot \left(\frac{2A}{MR^2} + H\right)}.$$
(7)

На рис. 2 приведена типичная экспериментальная кривая намагничивания, аппроксимированная уравнением (7), на вставке дана зависимость среднего квадрата отклонения s^2 точек экспериментальной кривой M(H) от выражения (7) в относительных единицах, от величины подгоночного параметра R_c . Для демонстрации выбрана кривая M(H)пленки [Co₉₀P₁₀(115 Å)/Pd(14 Å)]₂₀. Минимум s^2 (в абсолютных единицах) хорошо согласуется со средним квадратом экспериментальной ошибки измерения величины M_s . Параметры H_a и R_c , соответствующие минимальному s^2 для исследуемых пленок Co/Pd приведены в таблице.

Располагая численными значениями величин H_a , A, M_s и R_c , мы можем вычислить величины $\langle H_a \rangle$ и R_f из формул (2), (3). Полученные таким образом величины $\langle H_a \rangle$ и R_f также приведены на рис. 1 (малыми темными символами). Видно хорошее соответствие величин $\langle H_a \rangle$ и R_f , полученных непосредственно из уравнения (1) и рассчитанных по формулам (2), (3). Анализ зависимостей $H_a(t_{Co})$, $R_e(t_{Co})$, $A(t_{Co})$, $M_s(t_{Co})$, представленных численно в таблице, показывает, что наибольшим значением градиента характеризуется обменная константа A (изменяется почти в 4 раза). Таким образом, становится очевидным, что основной причиной изменения характеристик магнитной микроструктуры $\langle H_a \rangle$ и R_f в мультислойных пленках Co/Pd, а следовательно и величин H_c этих образцов, является не изменение корреляционного радиуса анизотропии R_c или размера зерна, а изменение такой основной магнитной

Рис. 2. Кривая намагничивания пленки $[Co_{90}P_{10}(115\text{\AA})/Pd(14\text{\AA})]_{20}$ в области приближения к насыщению, аппроксимированная выражением (7) (сплошная линия). На вставке — зависимость s^2 от R_c для данной кривой M(H).

константы материала, как константа обменного взаимодействия *A*, реализующееся при уменьшении толщины индивидуального слоя Co. Аналогичная ситуация осуществляется, по нашему мнению, и в нанокристаллических ферромагнитных сплавах типа finemet, интенсивно изучаемых в последние годы.

Список литературы

- [1] Imry Y., Ma S.-K. // Phys. Rev. Lett. 1975. V. 35. P. 1399-1401.
- [2] Herzer G. // IEEE Trans. On Magn. 1990. V. 26. P. 1397-1402.
- [3] Muller M., Mattern N. // JMMM. 1994. V. 136. P. 79-87.
- [4] Suzuki K., G. Herzer G., Cadogan J.M. // JMMM. 1998. V. 177–181. P. 949– 952.
- [5] Murillo N., Gonzalez J. // JMMM. 2000. V. 218. P. 53-59.
- [6] Ryne J.J. // IEEE Trans. On Magn. 1985. V. MAG-21. P. 1990–1995.
- [7] Löffler J.F., Meier J.P., Doudin B. et al. // Phys. Rev. B. 1998. V. 57. N 5. P. 2915–2924.
- [8] Игнатченко В.А., Исхаков Р.С., Попов Г.В. // ЖЭТФ. 1982. Т. 82. В. 5. С. 1518–1531.
- [9] Исхаков Р.С., Комогорцев С.В., Балаев А.Д. и др. // Письма в ЖЭТФ. 2000. Т. 72. В. 6. С. 440–444.
- [10] Исхаков Р.С., Комогорцев С.В., Мороз Ж.М. и др. // Письма в ЖЭТФ. 2000. Т. 72. В. 12. С. 872–878.
- [11] Исхаков Р.С., Столяр С.В., Чеканова Л.А. и др. // ФТТ. 2001. Т. 43. С. 1072– 1075.
- [12] Исхаков Р.С., Комогорцев С.В., Столяр С.В. и др. // Письма в ЖЭТФ. 1999. Т. 70. В. 11. С. 727–732.
- [13] Чеканова Л.А., Исхаков Р.С., Фиш Г.И. и др. // Письма в ЖЭТФ. 1974. Т. 20. С. 73–76.
- [14] Игнатченко В.А., Исхаков Р.С. // ФММ. 1992. В. 6. С. 75-86.