Новые публикации
Copper Ferrite Nanoparticles Synthesized Using Anion-Exchange Resin: Influence of Synthesis Parameters on the Cubic Phase Stability
https://doi.org/10.3390/ma16062318
Copper ferrite is of great interest to researchers as a material with unique magnetic, optical, catalytic, and structural properties. In particular, the magnetic properties of this material are structurally sensitive and can be tuned by changing the distribution of Cu and Fe cations in octahedral and tetrahedral positions by controlling the synthesis parameters. In this study, we propose a new, simple, and convenient method for the synthesis of copper ferrite nanoparticles using a strongly basic anion-exchange resin in the OH form. The effect and possible mechanism of polysaccharide addition on the elemental composition, yield, and particle size of CuFe2O4 are investigated and discussed. It is shown that anion-exchange resin precipitation leads to a mixture of unstable cubic (c-CuFe2O4) phases at standard temperature and stable tetragonal (t-CuFe2O4) phases. The effect of reaction conditions on the stability of c-CuFe2O4 is studied by temperature-dependent XRD measurements and discussed in terms of cation distribution, cooperative Jahn–Teller distortion, and Cu2+ and oxygen vacancies in the copper ferrite lattice. The observed differences in the values of the saturation magnetization and coercivity of the prepared samples are explained in terms of variations in the particle size and structural properties of copper ferrite.
Development of DNA aptamers for visualization of glial brain tumors and detection of circulating tumor cells
https://doi.org/10.1016/j.omtn.2023.03.015
Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.
Use of Magnetic Resonance Imaging in Petroleum Research: Potentialities and Prospects (A Review)
https://doi.org/10.1134/S0965544123020196
Potentialities of magnetic resonance imaging (MRI) in petroleum research are analyzed. Major attention is paid to technical features of the method as applied to oil extraction and preparation. Available published data are systematized. Four key directions of MRI, which undergo active development now, are distinguished: oil in a porous matrix; oil interfaces; destabilization of petroleum systems; transport of crude oils and petroleum systems. Key studies in this field are considered, essential points reflecting the MRI efficiency are presented, and the range of problems that can be solved using MRI, including prospects for further expansion of the application fields, is outlined. The possibilities of studying the morphological, structural, and dynamic aspects of the interaction of crude oils with the environment and the phase behavior of oils under the conditions of intense external actions are discussed. The review favors expansion of the experimental potential of specialists in the field of oil extraction, preparation, and refining, and also in the adjacent fields of physical and colloidal chemistry, chemistry of surface phenomena, and macromolecular chemistry.
Spin dynamics in ensembles of ultrafine ferrihydrite nanoparticles
https://doi.org/10.1103/PhysRevB.107.115413
Features of the spin dynamics in ensembles of interacting (FH-chem) and weakly interacting (FH-coated) magnetic ultrasmall (⟨d⟩∼2 nm) ferrihydrite nanoparticles have been explored. The dc and ac magnetic susceptibilities [χ′(T) and χ''(T)] of the investigated samples have been thoroughly measured in a weak magnetic field (2 Oe) around the temperatures of superparamagnetic blocking of the nanoparticle magnetic moments (19 and 50.4 K for FH-coated and FH-chem, respectively, according to the dc magnetization data). It has been shown that the magnetic interactions between nanoparticles induce the formation of the cluster spin-glass state below the superparamagnetic blocking temperature (Tg=18 and 49.5 K for FH-coated and FH-chem, respectively). It has been found that coating of nanoparticles increases the critical scaling index from zν=5.9 (FH-chem) to zν=8.0 (FH-coated). This indicates a general slowdown of the dynamics of correlated spins, which is also expressed as an increase in relaxation time τ0 after switching on the interparticle interactions. We attribute this phenomenon to a consequence of a change in the volume of correlated spins with the increasing size of a cluster of interacting nanoparticles. It has been demonstrated using the simulated χ''(T) dependence that the dissipation of the magnetic energy occurs in two independent stages. The first stage is directly related to the blocking of the nanoparticle magnetic moments, while the second stage reflects the spin-glass behavior of surface spins and depends strongly on the intensity of the interparticle interactions.
Magnetic circular dichroism of Co nanoparticles localized in matrices of various types
https://doi.org/10.1016/j.mtla.2023.101759
Magnetic and magneto-optical properties of cobalt nanoparticles (Co-NPs) dispersed in a transparent dielectric SiO2 and semiconductor ZnO matrices have been investigated. Field and temperature dependences of the samples magnetization showed the typical behavior of an ensemble of superparamagnetic particles with a blocking temperature near and below room temperature. The spectroscopy of magnetic circular dichroism (MCD) in the visible and near-infrared light ranges has revealed a significant difference between the behavior of the Co-NPs and a solid Co film. It has been found that the MCD spectrum shape for the Co-NPs does not depend on the matrix type. The room temperature magneto-optical activity of the Co-NPs in the different matrices has been estimated as an indicator for practical applications.
Magnetic ordering and chirality in multiferroic Dy1-xHoxMnO3 (x = 0.2)
https://doi.org/10.1016/j.physb.2023.414821
Effect of substitution Dy by Ho on the magneto-electric behavior of the compound Dy0.8Ho0.2MnO3 was investigated by the different methods of polarized and classical neutron diffraction and macroscopic methods. It is shown that substitution by Ho of 20% on the position of Dy do not change overall crystal symmetry of compound. It remains of Pbnm type down to the very low temperatures. Magnetic ordering, its temperature and field evolution was determined by the use of single crystal neutron diffraction and magnetization measurements. Chiral type of magnetic structure on Mn subsystem is confirmed below Tc ≈ 16 K. Using polarized neutron diffraction the 3-component character of rare earth magnetic ordering in Dy0.8Ho0.2MnO3 in contrast to DyMnO3 could be revealed. It was shown that doping by 20% Ho suppresses the spontaneous rare-earth ordering with its own propagation vector and provides the situation when two magnetic subsystems, manganese and rare earth ones have a coherent incommensurate spatial propagation. The influence of the external electric field on the magnetic chirality could be directly evidenced, proving strong magneto-electric coupling in multiferroic phase. The study of the electric polarization under similar temperatures and fields on the same samples provides the direct correlation between the results of the microscopic and macroscopic investigations.
Site-Engineering for Controlling Multiple-Excitation and Emission in Eu2+-Activated CaSrSiO4 Phosphors in Marine Fisheries
https://doi.org/10.1002/adom.202203151
Artificial light fishing technology has been used in marine fisheries for thousands of years. The light source with multi-color adjustable output is expected to become a new generation of fish-attracting lamps. Herein, a new method of crystal-site engineering through reducing atmospheres is proposed for the development of Eu2+ doped single-phase phosphor with multi-excitation and multi-emission properties. Following this approach, the distribution ratio of Eu2+ at Ca2+ and Sr2+ sites in CaSrSiO4 (CSO) can be modulated. Importantly, Eu2+ at both lattice sites exhibit non-interfering optical properties, CSO:Eu2+ phosphor realizes multi-color output from green to yellow and then to red when Eu2+ occupies the Sr2+ and Ca2+ sites in a relatively balanced ratio. Benefitting from the tunable color range covering the spectral sensitivity regions of most marine fishes, this phosphor may eventually be applied in futuristic innovative fish-attracting lamps.
Tiling Photonic Topological Insulator for Laser Applications
https://doi.org/10.3390/app13064004
A photonic topological insulator is a structure that isolates radiation in the bulk rather than at the edge (surface). Paradoxically, applications of such an insulator focus on its conducting edge states, which are robust against structural defects. We suggest a tiling photonic topological insulator constructed from identical prism resonators connected to each other. The light beam circulates inside the tiling bulk without propagation. However, we experimentally demonstrate a topologically-protected propagating state due to the disconnected faces of the edge resonators. The investigated state is robust against removing or attaching prism resonators. Moreover, the protection principle is phase-free and therefore highly scalable both in wavelength and resonator size. The tiling is suggested for active topological photonic devices and laser arrays.
A High-Selectivity Wideband Bandpass Dual-Mode Microstrip Filter
https://doi.org/10.1134/S1028335822020021
A half-wave microstrip resonator design with an irregular strip conductor short-circuited to the screen by its ends has been investigated. Based on the resonances of the first two oscillatory modes of this resonator, a miniaturized second-order filter with a fractional bandwidth from 40% to 90% has been implemented, which has a wide high-frequency stopband. A prototype of the designed eight-order filter based on four dual-mode resonators with a passband center frequency of 2 GHz and a fractional bandwidth of 40% has been fabricated on an alumina substrate 45.0 × 10.5 × 1.0 mm3 in size with a permittivity of ε = 9.8. The filter frequency response slopes are extremely steepness due to two attenuation poles located on the left and right sides of the passband. The experimental characteristics of the prototype are in good agreement with the data of the numerical electromagnetic simulation of the 3D model of the filter.
Mass Transfer of Base Metals in Upward Penetration of Solutions in Tailing Dumps
https://doi.org/10.1134/S1062739122060187
The article describes the studies into the process of upward mass transfer in flotation tailings with water solutions. The swift-flowing geological process is investigated using the magnetic resonance imaging. The kinetics of water-soluble minerals as well as the structure and substance transformations in the body of tailings are studied for substantiating in-situ formation of the target concentration zones at the tailings surface.
Temperature and Dimensional Dependence of the Irreversibility Field of a Layered High-Temperature Superconductor
https://doi.org/10.1134/S1063778822100398
The Monte Carlo method was used in a 2D model of the layered HTSC to calculate the magnetization curves of a granulated high-temperature superconductor for various sizes of granules. In this approach magnetization of granules alone is taken into account, while the contribution of the gaps between granules is small and neglected. The irreversibility field has been found to decrease with temperature at the fixed size of granules and increase as the granule size increases at fixed temperature. The time dependence of residual magnetization has been studied at various temperatures. The relaxation rate is shown not to depend on the granule size at low temperatures but to decrease with the increasing size (provided that the granule size is less than 3 μm) at a high temperature when the magnetic flux creep becomes of importance.
Site-Engineering for Controlling Multiple-Excitation and Emission in Eu2+-Activated CaSrSiO4 Phosphors in Marine Fisheries
https://doi.org/10.1002/adom.202203151
Artificial light fishing technology has been used in marine fisheries for thousands of years. The light source with multi-color adjustable output is expected to become a new generation of fish-attracting lamps. Herein, a new method of crystal-site engineering through reducing atmospheres is proposed for the development of Eu2+ doped single-phase phosphor with multi-excitation and multi-emission properties. Following this approach, the distribution ratio of Eu2+ at Ca2+ and Sr2+ sites in CaSrSiO4 (CSO) can be modulated. Importantly, Eu2+ at both lattice sites exhibit non-interfering optical properties, CSO:Eu2+ phosphor realizes multi-color output from green to yellow and then to red when Eu2+ occupies the Sr2+ and Ca2+ sites in a relatively balanced ratio. Benefitting from the tunable color range covering the spectral sensitivity regions of most marine fishes, this phosphor may eventually be applied in futuristic innovative fish-attracting lamps.
Voltage-tunable Q factor in a photonic crystal microcavity
A photonic crystal microcavity with a tunable quality factor (Q factor) has been implemented on the basis of a bound state in the continuum using the advanced liquid crystal cell technology platform. It has been shown that the Q factor of the microcavity changes from 100 to 360 in the voltage range of 0.6 V.
Properties of GdSF and phase diagram of the GdF3 - Gd2S3 system
http://dx.doi.org/10.2139/ssrn.4330358
The objectives of the article were to synthesize and study the properties of GdSF, to construct a phase diagram of the GdF3-Gd2S3 system, and to calculate the liquids. The GdSF compound (ST PbFCl, P4/nmm, a = 0.3832(7) nm, c = 0.6853(9) nm) has an optical band gap for a direct interband transition of 2.56 eV and is characterized by a pronounced increase in the Kubelka-Munk function in the region of this transition. Direct optical bandgap of GdSF is measured to be 2.77 eV. Two indirect bandgaps are detected to be 1.54 and 2.4 eV. Meta-GGA simulations of band structure predicting 1.481 eV direct bandgap of GdSF are in good agreement with these features of experimental absorption spectrum. To explain this complicate case, we argue that formally direct optical transitions to highly dispersive subbands contribute not to direct but to indirect bandgaps measured by Tauc analysis. The GdSF compound melts incongruently with the formation of a melt and γ-Gd2S3 compound at t = 1280 ± 2 ºС, ΔН = 40.6 ± 2.8 KJ/mol, ΔS 26.1 ± 1.8 J/mol*K. The eutectic has a composition of 13 mol.% Gd2S3 (0.74 GdF3 + 0.26 GdSF), the melting characteristics of the eutectic are 1182 ± 2°С, ΔН = 36.2 ± 2.5 KJ/mol, ΔS = 24.9 ± 1.7 J/mol*K. The phase diagram of the GdF3 - Gd2S3 system has been constructed. The balance equations for five phase transformations in the system, recorded by the DSC method, are compiled. Convergence was achieved in the construction of the liquidus of the system according to DSC data and the calculation according to the Redlich-Kister equation.
Effect of local Coulomb interaction on Majorana corner modes: Weak and strong correlation limits
https://doi.org/10.1103/PhysRevB.107.125401
Here we present an analysis of the evolution of Majorana corner modes realizing in a two-dimensional higher-order topological superconductor (HOTSC) on a square lattice under the influence of local Coulomb repulsion. Both weak- and strong-interaction regimes are studied. It is shown that in the homogeneous system, the weak repulsion widens the region of the topologically nontrivial phase on the phase diagram. The open-boundary effect, resulting in spatial inhomogeneity of the system, leads to the appearance of the ground-state crossover as the repulsion intensity increases. Before the crossover, concentration correlators are C4 symmetric and spin independent, and the corner states have energies that are determined by the overlap of the excitation wave functions localized at the different corners. After the crossover, the concentration correlators are spin dependent and possess the spontaneously broken symmetry. In turn, the corner excitation energy is size independent and defined by the Coulomb repulsion intensity with a quadratic law. In the strong-repulsion regime we derive the effective HOTSC Hamiltonian in the atomic representation and found a rich variety of interactions induced by virtual processes between the lower and upper Hubbard subbands. It is shown that Majorana corner modes still can be realized in the limit of the infinite repulsion, although the boundaries of the topologically nontrivial phase are strongly renormalized by Hubbard corrections.
Solid-state synthesis, magnetic and structural properties of epitaxial D03-Fe3Rh(001) thin films
https://doi.org/10.1016/j.intermet.2023.107871
Here we first report on the formation of epitaxial D03-Fe3Rh(001) films grown during solid-state reaction in Rh/Fe(001) bilayers on MgO(001) substrates. Samples of the Fe68Rh32 composition above 400 °C showed the formation of a new ordered phase, in addition to the ordered B2–FeRh phase (space group Pm-3m, lattice constant a = 0.2993 nm), which becomes the dominant phase in Fe76Rh24 samples. These results and the results of the asymmetrical XRD φ-scan prove that the new ordered phase is the ordered D03-Fe3Rh(001) phase (space group Fm-3m, lattice constant a = 0.5888 nm), forming a cube-on-cube orientation relationship with respect to the MgO(001) substrate. The D03-Fe3Rh sample is a soft magnetic material with high saturation magnetization.
Ca2+-Triggered Coelenterazine-Binding Protein Renilla: Expected and Unexpected Features
https://doi.org/10.3390/ijms24032144
Ca2+-triggered coelenterazine-binding protein (CBP) is a natural form of the luciferase substrate involved in the Renilla bioluminescence reaction. It is a stable complex of coelenterazine and apoprotein that, unlike coelenterazine, is soluble and stable in an aquatic environment and yields a significantly higher bioluminescent signal. This makes CBP a convenient substrate for luciferase-based in vitro assay. In search of a similar substrate form for the luciferase NanoLuc, a furimazine-apoCBP complex was prepared and verified against furimazine, coelenterazine, and CBP. Furimazine-apoCBP is relatively stable in solution and in a frozen or lyophilized state, but as distinct from CBP, its bioluminescence reaction with NanoLuc is independent of Ca2+. NanoLuc turned out to utilize all the four substrates under consideration. The pairs of CBP-NanoLuc and coelenterazine-NanoLuc generate bioluminescence with close efficiency. As for furimazine-apoCBP-NanoLuc pair, the efficiency with which it generates bioluminescence is almost twice lower than that of the furimazine-NanoLuc. The integral signal of the CBP-NanoLuc pair is only 22% lower than that of furimazine-NanoLuc. Thus, along with furimazine as the most effective NanoLuc substrate, CBP can also be recommended as a substrate for in vitro analytical application in view of its water solubility, stability, and Ca2+-triggering “character”.
Structure and Vibrational Spectroscopy of C82 Fullerenol Valent Isomers: An Experimental and Theoretical Joint Study
https://doi.org/10.3390/molecules28041569
Gd@C82OxHy endohedral complexes for advanced biomedical applications (computer tomography, cancer treatment, etc.) were synthesized using high-frequency arc plasma discharge through a mixture of graphite and Gd2O3 oxide. The Gd@C82 endohedral complex was isolated by high-efficiency liquid chromatography and consequently oxidized with the formation of a family of Gd endohedral fullerenols with gross formula Gd@C82O8(OH)20. Fourier-transformed infrared (FTIR) spectroscopy was used to study the structure and spectroscopic properties of the complexes in combination with the DFTB3 electronic structure calculations and infrared spectra simulations. It was shown that the main IR spectral features are formed by a fullerenole C82 cage that allows one to consider the force constants at the DFTB3 level of theory without consideration of gadolinium endohedral ions inside the carbon cage. Based on the comparison of experimental FTIR and theoretical DFTB3 IR spectra, it was found that oxidation of the C82 cage causes the formation of Gd@C82O28H20, with a breakdown of the integrity of the parent C82 cage with the formation of pores between neighboring carbonyl and carboxyl groups. The Gd@C82O6(OOH)2(OH)18 endohedral complex with epoxy, carbonyl and carboxyl groups was considered the most reliable fullerenole structural model.
Solid-state synthesis, magnetic and structural properties of epitaxial D03-Fe3Rh(001) thin films
https://doi.org/10.1016/j.intermet.2023.107871
Here we first report on the formation of epitaxial D03-Fe3Rh(001) films grown during solid-state reaction in Rh/Fe(001) bilayers on MgO(001) substrates. Samples of the Fe68Rh32 composition above 400 °C showed the formation of a new ordered phase, in addition to the ordered B2–FeRh phase (space group Pm-3m, lattice constant a = 0.2993 nm), which becomes the dominant phase in Fe76Rh24 samples. These results and the results of the asymmetrical XRD φ-scan prove that the new ordered phase is the ordered D03-Fe3Rh(001) phase (space group Fm-3m, lattice constant a = 0.5888 nm), forming a cube-on-cube orientation relationship with respect to the MgO(001) substrate. The D03-Fe3Rh sample is a soft magnetic material with high saturation magnetization.
Synthesis, structures and magnetic properties of the Eu-based quaternary tellurides EuGdCuTe3 and EuLuCuTe3
https://doi.org/10.1039/D2CE01578A
Novel heterometallic quaternary tellurides EuGdCuTe3 and EuLuCuTe3 are reported for the first time. Both compounds were obtained from the elements as single crystals using the flux-assisted synthetic approach. The crystal structure of EuGdCuTe3 was solved in orthorhombic space group Pnma with the structural type Eu2CuS3, while the crystal structure of EuLuCuTe3 belongs to orthorhombic space group Cmcm with the structural type KZrCuS3. The 3D crystal structure of EuGdCuTe3 is constructed from EuTe7 capped trigonal prisms, GdTe6 distorted octahedra as well as CuTe4 tetrahedra. The octahedra form 2D layers, further strengthened by 1D polymeric chains (CuTe4)n. These layers are separated by 1D dimeric ribbons, formed by EuTe7 capped trigonal prisms and 1D free channels. The 3D crystal structure of EuLuCuTe3 is constructed from EuTe6 trigonal prisms, LuTe6 distorted octahedra and CuTe4 tetrahedra. The latter two polyhedra also form 2D layers, which are separated by alternating 1D polymeric chains (EuTe6)n and 1D free channels. Both tellurides were found to be paramagnetic with the transition to a ferrimagnetic state at about 8 K for EuGdCuTe3 and to a ferromagnetic state at about 3 K for EuLuCuTe3.
Photoelectrochemical Water Splitting by a Nanostructured Electrode and Green Hydrogen Energy
https://doi.org/10.22184/1993-7296.fros.2022.16.2.116.125
Chemical Group Substitution Enables Highly Efficient Mn4+ Luminescence in Heterovalent Systems
https://doi.org/10.1002/adom.202300076
Defects are a double-edged sword for heterovalent metal-ion doping phosphors. Along with the luminescence tunability of phosphors bestowed by defects, their expected luminescence efficiency would also be inevitably lowered due to the presence of these quenching sites. Herein, a chemical group substitution strategy is proposed, where inorganic polyhedrons act as the smallest chemical units during the structural evolution of the doping process. Such a method can not only effectively prevent the defect generation for charge compensation in heterovalent doping systems, but also facilitate the incorporation of activators into the matrix, leading to extremely high luminescence efficiency. The concept is first confirmed energetically favorable by first-principles simulations. As a robust experimental proof, two newly reported Mn4+-incorporated hexavalent organic-inorganic hybrid oxyfluorides (TMA)2BO2F4:Mn4+ (where TMA stands for tetramethylammonium, and B = W6+ or Mo6+) present high quantum efficiency (up to 94.4%) and short lifetime (down to 2.26 ms) that are superior to the commercial red phosphor K2SiF6:Mn4+ (≈84.8%, ≈8.06 ms). Utilizing the differences in decay lifetimes and thermal quenching behaviors of (TMA)2BO2F4:Mn4+ and K2SiF6:Mn4+, a time- and temperature-resolved single-color multiplexing mode with high-safety and easy-access is developed for information security. This work offers an effective strategy to manipulate defect generation in luminescent materials.
Thermokinetic study of intermetallic phase formation in an Al/Cu multilayer thin film system
https://doi.org/10.1016/j.mtla.2023.101747
The solid-state reaction process in a multilayer thin film system (Al/Cu)50 has experimentally been studied using the methods of simultaneous thermal analysis (STA) and in situ electron diffraction. A detailed kinetic analysis of the phase formation processes during the solid-state reaction has shown that the observed solid-state transformations can be described by a statistically significant kinetic model where each stage corresponds to the reaction of the n-th order with autocatalysis. The low-temperature stage has been demonstrated to be attributable to the formation of the θ-Al2Cu phase, with the medium-temperature and high-temperature ones corresponding to the α2-AlCu3 and γ1-Al4Cu9 phases, respectively. The kinetic parameters for the formation of the phases θ-Al2Cu, α2-AlCu3 and γ1-Al4Cu9 have been determined. It has been shown that the kinetic model describing the solid-state reaction in the Al–Cu multilayer thin film system is in best agreement with the experimental data in the case of a competition between the formation stages of the α2-AlCu3 and γ1-Al4Cu9 phases.
Biosynthesis and Properties of Sulfur-Containing Polyhydroxyalkanoates (PHAs) Produced by Wild-Type Strain Cupriavidus necator B-10646
https://doi.org/10.3390/polym15041005
The study addresses the growth of the wild-type strain Cupriavidus necator B-10646 and the synthesis of sulfur-containing polyhydroxyalkanoates (PHA) by this strain on media containing fructose and three different precursors (3-mercaptopropionic acid, 3′,3′-dithiodipropionic acid and 3′,3′-thiodipropionic acid). By varying the concentration and number of doses of the precursors added into the bacterial culture, it was possible to find conditions that ensure the formation of 3-mercaptopropionate (3MP) monomers from the precursors and their incorporation into the C-chain of poly(3-hydroxybutyrate). A series of P(3HB-co-3MP) copolymer samples with different content of 3MP monomers (from 2.04 to 39.0 mol.%) were synthesized and the physicochemical properties were studied. The effect of 3MP monomers is manifested in a certain decrease in the molecular weight of the samples and an increase in polydispersity. Temperature changes are manifested in the appearance of two peaks in the melting region with different intervals regardless of the 3MP content. The studied P(3HB-co-3MP) samples, regardless of the content of 3MP monomers, are characterized by equalization of the ratio of the amorphous and crystalline phases and have a close degree of crystallinity with a minimum of 42%, = and a maximum of 54%.
Phase transitions in a polycrystalline compound Ho0.1Mn0.9S
https://doi.org/10.1016/j.ssc.2023.115134
Sequence of structural transitions in the magnetically ordered region and a displacement-type structural transition at T = 220 K accompanied by the variation in the thermal expansion coefficient, ultrasound attenuation coefficient, g factor, and polarization current in the polycrystalline compound Ho0.1Mn0.9S was found. The electronic transitions above room temperature were established on the basis of the measurements of the conductivity, ultrasound attenuation maxima, and IR spectra.
Structural and Spectroscopic Effects of Li+ Substitution for Na+ in LixNa1-xCaLa0.5Er0.05Yb0.45(MoO4)(3) Upconversion Scheelite-Type Phosphors
https://doi.org/10.3390/cryst13020362
New triple molybdates LixNa1−xCaLa0.5(MoO4)3:Er3+0.05/Yb3+0.45 (x = 0, 0.05, 0.1, 0.2, 0.3) were manufactured successfully using the microwave-assisted sol-gel-based technique (MAS). Their room-temperature crystal structures were determined in space group I41/a by Rietveld analysis. The compounds were found to have a scheelite-type structure. In Li-substituted samples, the sites of big cations were occupied by a mixture of (Li, Na, La, Er, Yb) ions, which provided a linear cell volume decrease with the Li content increase. The increased upconversion (UC) efficiency and Raman spectroscopic properties of the phosphors were discussed in detail. The mechanism of optimization of upconversion luminescence upon Li content variation was shown to be due to the control of excitation/energy transfer channel, while the control of luminescence channels played a minor role. The UC luminescence maximized at lithium content x = 0.05. The mechanism of UC optimization was shown to be due to the control of excitation/energy transfer channel, while the control of luminescence channels played a minor role. Over the whole spectral range, the Raman spectra of LixNa1−xCaLa0.5(MoO4)3 doped with Er3+ and Yb3+ ions were totally superimposed with the luminescence signal of Er3+ ions, and increasing the Li+ content resulted in the difference of Er3+ multiple intensity. The density functional theory calculations with the account for the structural disorder in the system of Li, Na, Ca, La, Er and Yb ions revealed the bandgap variation from 3.99 to 4.137 eV due to the changing of Li content. It was found that the direct electronic transition energy was close to the indirect one for all compounds. The determined chromaticity points (ICP) of the LiNaCaLa(MoO4)3:Er3+,Yb3+ phosphors were in good relation to the equal-energy point in the standard CIE (Commission Internationale de L’Eclairage) coordinates.
Crystal and Molecular Structure of a co-Crystal of 5-Nitrimino-1,4H-1,2,4-triazole with Dimethyl Sulfoxide
https://doi.org/10.1134/S1063774522070409
The structure of the labile co-crystal of 5-nitrimino-1,4Н-1,2,4-triazole with dimethyl sulfoxide was determined by X-ray diffraction. It was established that the molecule, previously known as 3(5)-nitramino-1,2,4-triazole, has a nitrimine structure. The geometric parameters of the molecules are similar to those of other nitrimino-1,2,4-triazoles. Intermolecular interactions in the co-crystal are considered. An explanation is provided for the lability of the co-crystal.
Radiation of a Material Particle Placed in a Dielectric Medium under the Action of Electromagnetic Field
https://doi.org/10.1134/S1063776122120020
It has been shown that taking account of radiation from a material particle with negative relative permittivity εp that is in a dielectric medium with permittivity εm and experiences the action of an electromagnetic field prevents unlimited growth of particle’s electric dipole moment and its related electric fields if 2εm + εp → 0 and the medium and particle are lossless. Calculated radiation losses are embodied in a correction to the dielectric losses of a real particle. Using polystyrene with a silver nanoparticle showing negative permittivity in the optical range as an example, the behavior of the particle versus particle size has been studied for the permittivity varying in the interval –16 < εp < 16. It has been found that even if the permittivity of the nanoparticle is positive, taking the particle radiation into account considerably improves the accuracy of quasistatic calculation.
Possible Noncollinear Magnetism and Different Valence State of Manganese Ions in Quasi-Low-Dimensional Ludwigites of (Ni,Cu,Mn)3BO5
https://doi.org/10.1002/pssb.202200457
The content of transition-metal ions and their valence state for three compositions of NixCuyMn3−x−yBO5 are estimated by the methods of X-ray absorption spectroscopy. In all the three compositions, the copper content does not exceed 0.25. One of the compositions has manganese ions both in the trivalent and bivalent states according to the K-edge position. The calculations of the total energies of various cation-ordered structures using the software package Wien2K show that copper ions predominately occupy one site, namely, 2(2d). The measurements of the magnetic properties show two types of magnetic transitions in all the three compositions, with one of them being in the range of 60–75 K and the other one at 10 K. Based on the exchange interactions calculated in the framework of the empirical model, magnetic ordering temperatures are estimated for two- and three-sublattice structures and the magnetic transition in the range of 60–75 K is supposed to be connected with magnetic moment ordering in sites 2 and 3.
Diffraction of a Laguerre-Gaussian beam in Raman interaction with a spatially periodic pump field
https://doi.org/10.1103/PhysRevA.107.023519
We studied Fresnel diffraction of a Laguerre-Gaussian beam LGp,l with arbitrary azimuthal l and radial p indices on a grating induced during its Raman interaction with a spatially periodic pump field in an atomic medium. The diffraction pattern turned out to be more complex than the classical Talbot effect observed when a plane wave illuminates a two-dimensional grating. The simulation results show that, under certain conditions, at distances corresponding to the classical Talbot planes (integer and fractional), periodic amplitude-phase distributions appear. The diffraction patterns are not a probe-field image in the induced grating plane, but a regular array of vortex annular-shaped microbeams with an inhomogeneous intensity distribution depending on the l and p indices and with a topological charge equal to that of the initial probe beam. The intensity and spatial distribution of diffraction patterns can be controlled by Raman amplification in the induced grating by varying the pump-field intensity or the Raman detuning.
Операции с документом