High-Strength Building Material Based on a Glass Concrete Binder Obtained by Mechanical Activation

Dobrosmyslov, S.S., Zadov, V.E., Nazirov, R.A., (...), Shabanova, K.A., Khartov, S.V.// Buildings//

https://doi.org/10.3390/buildings13081992

As part of the work, the chemical interaction of finely ground glass (~1 μm), calcium oxide, and water was studied. It is shown that an increase in the fineness of grinding makes it possible to abandon autoclave hardening in the production of products on a hydrosilicate binder. The study of chemical interaction was carried out by calculating the thermodynamic equilibrium and was also confirmed by XRD analysis. DTA analysis showed that an increase in the treatment temperature leads to an increase in the proportion of the reacted phase at the first stage. Subsequently, phase formation is associated with the presence of CaO. The carrier of strength characteristics is the CaO×2SiO2×2H2O phase. The selection and optimization of the composition make it possible to obtain a high-strength glass concrete material with a strength of about 110 MPa. The micrographs of the obtained samples correspond to classical hydrosilicate systems.


Поделиться: