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We study the nonlinear Raman–Nath diffraction (NRND) of femtosecond laser pulses in a 1D periodic nonlinear
photonic structure. The calculated second-harmonic spectra represent frequency combs for different orders of trans-
verse phase matching. These frequency combs are in close analogy with the well-known spectral Maker fringes
observed in single crystals. The spectral intensity of the second harmonic experiences a redshift with a propagation
angle, which is opposite the case of Čerenkov nonlinear diffraction. We analyze how NRND is affected by the group-
velocity mismatch between fundamental and second-harmonic pulses and by the parameters of the structure. Our
experimental results prove the theoretical predictions. © 2014 Optical Society of America
OCIS codes: (190.2620) Harmonic generation and mixing; (190.4223) Nonlinear wave mixing; (160.4330) Nonlinear

optical materials.
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When a monochromatic wave propagates through a
refractive index grating, either Bragg or Raman–Nath dif-
fraction takes place. A similar situation occurs when a
homogenous optical medium possesses periodical modu-
lation of second-order nonlinear susceptibility forming a
nonlinear grating. In this case, nonlinear Bragg diffrac-
tion and nonlinear Raman–Nath diffraction (NRND)
can be observed [1–4]. Nonlinear Bragg diffraction ap-
pears when phase mismatch Δk between the double fun-
damental wave vector 2k1 and second-harmonic wave
vector k2 is strictly compensated by the reciprocal lattice
vector G (RLV) of the structure Δk � 2k1 − k2 � mG,
where m is an integer being the order of transverse
quasi-phase-matching. Although in most practical cases
this condition fails, one can observe less efficient
second-harmonic generation (SHG), which is due to
Čerenkov nonlinear diffraction (CND) [5–15] when only
longitudinal components are involved k2 cos θ � 2k1,
where θ is the inner emission angle of the second
harmonic (SH) with respect to the fundamental propaga-
tion direction. On the contrary, NRND occurs when only
transverse components of wave vectors are matched by
RLV, such that k2 sin βm � mG0. In this case, multiple
second-harmonic beams diffract on the nonlinear grating
at the angles βm [3]. Being incompletely phase matched,
any one of these types of phase matching attracts much
attention in view of wide tunability in the spectral and
angular ranges. It should be emphasized that SHG, due
to nonlinear Bragg diffraction, is possible in the case
when the CND angle is equal to one of the NRND angles
(θ � βm), which imposes restrictions on the parameters
of the nonlinear grating, the operating wavelengths, and
the incidence angles of the fundamental beam. An
elegant analysis of interrelation between these processes
can be found in [4]. The study of CND as well as nonlinear
Bragg diffraction has been the subject of numerous
prominent works [1–15], whereas NRND still remains
an understudied phenomenon. The first observation of

SHG via NRND was reported in [2]. A series of experi-
ments, where quasi-monochromatic waves were used
as a fundamental source, were performed by the authors
of [2–4]. Although ultrashort laser pulses were used
in recent works [16,17], a detailed treatment of their
conversion via NRND is still lacking. We believe that
such treatment will enrich our knowledge of this phe-
nomenon and prove the recent theoretical analysis to
be correct [18].

In this Letter, we report our study of SHG of femtosec-
ond laser pulses under NRND. The sample under study
was a 1D periodic nonlinear photonic structure based
on an uniaxial ferroelectric congruent lithium niobate
(CLN) crystal with the dimensions 11 mm × 2 mm ×
0.5 mm fabricated by an electric-field poling procedure
using a lithographically defined photoresist grating [19]
(Labfer Ltd.). Its second-order nonlinear susceptibility
was modulated along the x axis with a period of
Λ � 10 μm, as shown in Figs. 1(a) and 1(b). Fundamental
radiation from a Ti:sapphire oscillator (Tsunami, Spec-
tra-Physics), delivering 100 fs pulses at a repetition rate
of 80 MHz, is directed at a small angle to the y axis of
CLN. The fundamental radiation was focused with a
20 cm lens into the sample to provide a 78 μm focal beam
spot. Polarization of the fundamental radiation was
chosen along the z axis to employ the highest nonlinear
coefficient d33. This configuration is not common, as fol-
lows from the previous works, but in our case we have no
restrictions on the sample size imposed by the poling
technique (thickness is limited to 0.5 mm for CLN
crystals due to a high coercive field). It is expected
that increasing the nonlinear interaction length will
strengthen the effects associated with the ultrashort
pulse interaction and improve the spectral characteris-
tics of SH.

A complete analysis of SHG of femtosecond pulses via
NRND can be done in terms of the recent theoretical
model [7]. It has been proved experimentally that this
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model is adequate to calculate spectral and angular
characteristics of SH radiation generated under a CND
condition [7,13,14]. In the current study, we will address
the cases of lower-order transverse phase matching in
which a series of SH beams is emitted at relatively small
angles with respect to the fundamental beam [Fig. 1(c)].
The SH spectral intensity generated at the distance y
inside the structure under slowly varying amplitude
approximation and in the low conversion limit can be
represented in the form [7]:
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and a are the fundamental pulse duration and the focal
spot radius at the 1∕e field strength point, Ω � ω2 − 2ω10
is the frequency detuning with ω10 being the central fre-
quency of the fundamental wave, ν � �u−1
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group-velocity mismatch, and nj denotes the refractive
index of CLN at respective frequency jω (j � 1, 2), which
can be found in [20]. The product νΩ governs the tempo-
ral walk-off between fundamental and second-harmonic
pulses owing to the group-velocity mismatch. The
function
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represents the Fourier transform of the nonlinear grating,
where K is the spatial frequency, while G0 � 2π∕Λ is the
primary RLV. Fourier coefficients gm for a periodic non-
linear grating with the duty cycle D take the form gm �
2D − 1 if m � 0 and gm � 2 sin�πmD�∕πm otherwise.
The fundamental beam focal spot size is given by
w � �2 ln 2�1∕2a. Note that for quasi-monochromatic
waves, Eq. (1) essentially can be simplified [18].
It is convenient to use the solution of Eq. (1) in the

coordinates of the SH propagation angle and the wave-

length. In this case, the spatial frequency and internal
SH propagation angle are interrelated through
K � 4πn2 sin�θ�∕λ, where λ is the fundamental wave-
length. Figure 2(a) shows angular dependence of the
SH spectral intensity at the central fundamental wave-
length 800 nm. As one can see, the SH spectral intensity
plot contains multiple angular peaks (corresponding to
different orders m), which can be attributed to NRND
in a periodic structure. It is appropriate to introduce the
definition of a local spectrum, which is a spectrum at a
given propagation angle rather than the angle-averaged
spectrum. The local SH spectrum is a set of peaks within
the overall spectrum corresponding to the fundamental
radiation (the so-called spectral fringes). In fact these
spectral peaks represent the well-known spectral Maker
fringes observed in a single crystal away from phase
matching [21]. The mathematical reason behind these
spectral peaks is oscillation of the sinc function in
Eq. (1), which occurs each time the argument is changed
by 2π. This leads to oscillation of the energy flow be-
tween fundamental and SH waves along the propagation
distance. The period of such oscillations is equal to the
double coherence length given by lcoh � π∕�Δk� νΩ −

K2∕2k2�. The factor νΩ accounts for the contribution
of the group-velocity mismatch between the fundamental
and SH pulses. As a result, the width and spacing be-
tween the spectral peaks are smaller than those in the
case of continuous waves when the factor νΩ is omitted.
It is worth noting that the spectral width and spacing are
also decreasing with the increasing of propagation dis-
tance. Angular averaging of the SH spectral intensity re-
sults in overlapping of adjacent peaks, causing ripples for
low-order phase matching [Fig. 2(b), blue curve] and
yielding a smooth spectrum for higher-order phase
matching. Analysis of Eq. (1) suggests that better overlap-
ping of adjacent peaks is assured when the sample is
thick enough and the fundamental radiation is tightly

Fig. 1. (a) Experimental scheme. (b) Part of etched polar
surface of the sample. (c) SH pattern on the screen (inset: ex-
panded view of NRND). Peripheral and central SH spots corre-
spond to CND and NRND, respectively.

Fig. 2. (a) Calculated angular distribution of SH spectral inten-
sity for the parameters: w � 40 μm, L � 400 μm, D � 0.75 (top
scale corresponds to NRND order). (b) SH spectra averaged
over the angle for NRND (m � �3, blue) and CND
(m � �21, pink). (c) and (d) Local angular plots of SH spectral
intensity for NRND of the third order (m � �3) and CND
(m � �21), respectively. The vertical scale corresponds to
the propagation angle.
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focused into the structure, providing a smooth averaged
SH spectrum. This is mainly due to the wider angular
bandwidth of SH achieved in this case. As depicted in
Figs. 2(a) and 2(c), the spectral intensity of SH experien-
ces quite a small redshift with the propagation angle. The
origin of this spectral shift can be understood in terms of
the condition for NRND: sin βm � mλ∕Λ; thus the longer
the wavelength, the larger the propagation angle. Note
that the spectral shift grows with the order of transverse
phase matching. However, the sign of this spectral shift is
opposite to the one corresponding to CND, as shown in
Figs. 2(c) and 2(d). In the case of CND, the transverse
phase mismatch is not strictly compensated by RLV
under numerical conditions, and the SH spectral intensity
maximum shifts toward higher wavelengths [Fig. 2(b)].
This shift can be compensated by a proper choice of
the structure period. The spectral width is mainly limited
by the fundamental beam spot size as reported in [14].
Figure 3 illustrates measured angular dependence of

the averaged SH power. This dependence is symmetric
despite the slightly oblique incidence of the fundamental
beam on the sample (less than 1 deg). It recently has been
shown experimentally and theoretically [3,4] that chang-
ing the incidence angle does not affect the respective am-
plitudes of SH beams, at least within an angular range of
10 deg. The average SH powers corresponding to beams
with m � �2 are equal and therefore can be used in the
fitting procedure for calculated and measured dependen-
ces. It has recently been shown [18] that the SH power
corresponding to different orders depends not only on
the duty cycle but also on the sample thickness. This re-
quires precise measurements of the sample thickness.
However, for broadband pumping, we can expect that
the corresponding angular distribution of SH power will
not depend on the thickness of a sample because of the
many spectral components involved, and averaging over
the spectrum gives us the same powers of specific SH
beams for different thicknesses. Thus distribution of the
average power among different SH peaks will be gov-
erned by the duty cycle value, which influences the re-
spective Fourier coefficients. For these purposes, SH
beams of order m � 0;�2 were chosen to satisfy the
condition �P0∕P�2�calc � �P0∕P�2�exp. The best agree-

ment between the fitted and measured dependences
was achieved at the duty cycle D ≈ 0.815. The retrieved
value of the duty cycle agrees well with the value ∼0.8
obtained from the optical images of the etched polar sur-
face of the sample, as shown in Fig. 1(b). The result of
this fitting is shown in Fig. 3. Some disagreement is
observed for the SH beams with m � �1. This disagree-
ment may appear due to the periodicity breaking of the
structure in accordance with [17,18]. Note that the angu-
lar widths of the calculated and measured dependences
are in good agreement with each other. The following
data from the experiment were used for our calculations:
800 nm central fundamental wavelength, 78 μm funda-
mental beam spot size, 80 fs fundamental pulse duration,
and L � 2 mm crystal length in the propagation direc-
tion. The inset in Fig. 3 illustrates the m � �2 SH beam
profile. The intensity distribution across the SH beam
cross section is adequately described by the Gaussian
function. Using a laser beam profiler LBP-1 (Newport
Corp.) mounted on a linear translation stage, we mea-
sured the angles of SH beam propagation corresponding
to different orders of NRND. We clearly observed the first
five orders. These results and the data calculated using
the formula sin βm � mλ∕Λ are summarized in Table 1.
The calculated data are in good correspondence with the
measured ones. It also has been proved that the passed
fundamental beam remains unchanged behind the sam-
ple, ensuring no change of the CLN refractive index,
which could be induced by high intensity.

Figure 4(a) shows the calculated and measured spec-
tra, corresponding to SH beams with order m � �2. The
calculated spectrum consists of a number of narrow-
width peaks (green curve), which cannot be resolved
by the spectrometer used. Despite this, averaging within
the 0.5 nm spectral window leads to smoothing of the SH
spectrum (black curve). As a result, the averaged calcu-
lated SH spectrum is in good agreement with the mea-
sured one (blue curve). Figures 4(b) and 4(c) show
measured SH spectra for NRND orders m � 0;�2 and
squared fundamental spectra. The coincidence between
these spectra means that SH spectra are ∼

���
2

p
times

wider than the fundamental one in the frequency scale.
While the SH spectrum width is independent of the fun-
damental spot size, the shape of the SH spectrum does
depend on the fundamental spot size. The highest SH
power of the central SH beam was up to 1 μW, resulting
in 10−6 SHG efficiency. It is expected that SHG efficiency
via NRND can be increased a few orders of magnitude
using 2D nonlinear photonic structures, as predicted
in [22].

Fig. 3. Measured (blue) and calculated (red) angular depend-
ences of SH intensity integrated over the spectrum. Inset: SH
beam profile (m � �2).

Table 1. Comparison between Predicted and
Measured NRND Order Parameters

Measurement [deg]

NRND Order Prediction [deg] Positive Negative

0 0 0� 0.01
1 2.29 2.30� 0.01 2.31� 0.01
2 4.59 4.66� 0.01 4.64� 0.01
3 6.89 6.93� 0.01 6.94� 0.01
4 9.21 9.13� 0.11 9.21� 0.01
5 11.54 11.67� 0.05 11.52� 0.01
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In summary, we have studied nonlinear Raman–Nath
diffraction of femtosecond laser pulses in a 1D periodic
nonlinear photonic structure. The calculated second-
harmonic spectra represent frequency combs for
different orders of transverse phase matching. These fre-
quency combs are in a close analogy with the well-known
spectral Maker fringes observed in single crystals. We
have found that the group-velocity mismatch between
fundamental and second-harmonic pulses causes nar-
rowing of the SH peaks. The spectral intensity of the
second harmonic experiences a redshift with the propa-
gation angle, which is opposite to the case of Čerenkov
nonlinear diffraction. This spectral shift grows with the
order of transverse phase matching. The calculated angu-
lar positions of individual SH beams and their angular
and spectral widths are in good agreement with the
experimental ones. A technique based on nonlinear
Raman–Nath diffraction can be applied for nondestruc-
tive characterization of periodic domain structures in
ferroelectric crystals.
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