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We study the frequency doubling in a quadratic nonlinear
photonic crystal consisting of periodically poled structures
mediated by uniform layers with random lengths. These
structures can be formed by new local impact methods for
ferroelectric crystal structuring. The statistical frequency
doubling theory is developed for such structures. The
effect of the number of random layers and variation in
their thicknesses on the second-harmonic conversion effi-
ciency is clarified. It is demonstrated that a proper choice
of the intermediate layer thickness can enhance or suppress
the conversion efficiency. A new type of the Maker-
fringes-like second-harmonic intensity oscillations is
predicted. © 2017 Optical Society of America
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At present, nonlinear photonic crystals (NPCs) are widely used
for conversion of coherent laser radiation into new frequencies
[1,2]. Nonlinear photonic crystals combine the high conversion
efficiency, compactness, and exceptional universality in design-
ing structures for target nonlinear optical processes. For these
purposes, electric field poling of ferroelectric crystals was devel-
oped [3]. At the same time, local impact methods for structur-
ing ferroelectrics have recently been proposed to fabricate
NPCs. These methods include electron beam writing [4,5],
atomic force microscope writing [6,7], and direct laser beam
pattering [8,9]. The advantage of these methods is the possibil-
ity of fabricating arbitrary high-quality domain structures on
submicrometer and nanosized scales [10]. The drawback of
these methods is the restriction imposed on the writing area
size, which typically varies within 0.02–0.2 cm. Fabrication
of relatively large (about 1 cm and more) structures faces certain
difficulties. Although these structures can gradually be formed,
the unavoidable random phase shifts at the transition between
specific regular sections are caused by insufficiently accurate
sample positioning during fabrication, which can result in the
low nonlinear conversion efficiency.

The statistical phenomena related to the randomness of the
nonlinear media parameters drew attention to nonlinear optics
long time ago (see studies [11,12] and monograph [13] and
references therein). Random spatial distribution of nonlinearity
leads to phase errors, which disturb phase matching [14]. On
the other hand, it suggests random quasi-phase matching,
which enables widely tunable [15,16] and broadband fre-
quency conversion [17]. The earlier studies addressed either
the continuously distributed random variations in domain
thicknesses along the structures [18–22], or random fluctua-
tions of the domain wall positions in regular structures [23].

In view of the aforesaid, the effect of random phase shifts
on the nonlinear optical processes in NPCs fabricated by
the new local impact methods is of special interest. In this work,
we investigate second-harmonic generation (SHG) in an as-
sembled nonlinear photonic crystal with periodically inserted
random layers and establish a new type of the second-harmonic
(SH) intensity oscillations.

Fig. 1. (a) Nonlinearity modulation in the assembled structure com-
posed of alternating periodic layers (blue and green) and random uni-
form layers (magenta). (b) Layer thicknesses versus layer numbers in
the structure.
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We consider the NPC design shown in Fig. 1. The NPC
structure stacked in the direction of the z-axis is assembled
from periodically poled structures mediated by uniform layers
with the thickness fluctuations. The average random layer
thickness was taken to be equal to a half-period Λ∕2 of the
periodic structure and the layer thickness fluctuations were
assumed to obey the Gaussian distribution law. For certainty,
we assume the number of random layers to be equal to the
number N � 1 of the periodically poled structures consisting
of 2M � 1 domains. In the undepleted fundamental wave
approximation, the SH amplitude is governed by

A2 � −iβA2
1F �L�; (1)

where β � 4π2χ�2�∕λ2n�λ2� is the nonlinear coupling coeffi-
cient, A1 is the fundamental frequency (FF) amplitude, λ2 is
the SH wavelength, n�λ2� is the SH refractive index, χ�2� is
the quadratic nonlinear susceptibility, and L is the crystal’s
length. The function F �L� describes the contribution of the
structure to the process and takes the simplest form F�L� �
L under the phase-matching conditions.

According to Fig. 1, the SH amplitude is determined by the
superposition of the amplitudes generated by the uniform (u)
and periodically poled (p) layers:

F �L� �
XN
n�0

�Fu�2n; 2n� 1; δ2n� � Fp�2n; 2�n� 1�; Lp��:

(2)

Here, the functions Fu and Fp correspond to the uniform and
periodically poled structure parts, which are

Fu�2n; 2n� 1; δ2n� �
1

iΔk
�eiΔkl2n�1 − eiΔkl 2n�; (3)

Fp�2n� 1; 2�n� 1�; Lp� �
Z

l2�n�1�

l2n�1

g�z�eiΔkzdz: (4)

In Eqs. (3) and (4), l n is the layer coordinate (l0 � 0), Δk �
k2 − 2k1 is the wave vector mismatch, k1;2 are FF and SH wave
vectors directed along the z-axis, g�z� is the alternating periodic
function of the coordinate z, δ2n � l2n�1 − l 2n is the uniform
layer thickness (random variable), Lp � l2�n�1� − l2n�1 �
1
2 �2M � 1�Λ is the periodic part thickness, andM is the num-
ber of periods. It can be shown that l 2n �

Pn−1
q�0 δ2q � nLp,

where the first term summarizes random thicknesses of uniform
layers.

Equation (4) can be transformed to

Fp�2n� 1; 2�n� 1�; Lp� � −i
2

π
LpeiΔkl 2n�1 ; (5)

where Δkl 2n�1 is the phase between the SH wave and polari-
zation induced at the double frequency.

Taking into account Eqs. (3) and (5), we arrive at

F � −i
XN
n�0

��
2Lp
π

� 1

Δk

�
eiΔkl 2n�1 −

1

Δk
eiΔkl2n

�
: (6)

Further, with the accuracy μ � π∕�2jΔkjLp� � Λ∕4Lp ≪ 1
(according to the parameters of the structure specified below
μ ≈ 10−2), we use Eq. (6) in the form

F ≈ −i
XN
n�0

��
2Lp
π

�
eiΔkl 2n�1

�
: (7)

Now we substitute Eq. (7) in Eq. (1) and multiply A2 by its
complex conjugate, designating at the same time summing in-
dices as n1 and n2, respectively. As a result, the SH intensity is

I 2 � jA2�L�j2 � β2I 21

�
2Lp
π

�
2 XN
n1;n2�0

�eiΔk�l 2n1�1−l 2n2�1��; (8)

where

Δk�l2n1�1 − l 2n2�1� � Δk
�
�n1 − n2�Lp �

Xn1
q�n2

δ2q

�
: (9)

Assume the uniform layer thickness to be

δ2q � �1� σξ2q�Λ∕2; (10)

where σξ2q specifies the Gaussian fluctuations of uniform layer
thicknesses, σ is the dispersion, ξ2q is the random quantity
(hξ2qi � 0, hξ22qi � 1) with the fluctuations for different q
being statistically independent. Statistical averaging of Eq. (8)
over a set of implementations of the structure, according to
Eqs. (10) and (9), yields

hI2i � β2I21

�
2

π
Lp

�
2 XN ;N

n1 ;n2�0

exp

�
−
�πσ�2
2

jn1 − n2j
�
: (11)

If �πσ�2 ≫ 1, then the summation of the SH amplitudes will
be incoherent and we obtain

hInch2 i � β2I 21

�
2

π
Lp

�
2

�N � 1�: (12)

At the coherent addition of the SH amplitudes (σ � 0), we
have

I ch2 � β2I 21

�
2

π
Lp

�
2

�N � 1�2: (13)

After double summation in Eq. (11), we obtain the following
general result:

hI2i � β2I21

�
2

π
Lp

�
2

�1 − e−γ�−2

× �2�N � 1� − 2�N � 2�e−γ
� 2e−γ�N�2� − �N � 1��1 − e−γ�2�: (14)

Here, 2γ � �πσ�2 is the phase dispersion. Using L’Hospital’s
rule twice, in the limit γ → 0, Eq. (14) is reduced to
Eq. (13), while at γ ≫ 1 we obtain Eq. (12). The results of
single random implementations are intermediate between these
two cases.

We consider frequency doubling of Nd:YAG laser radiation
at a wavelength of 1.064 μm. The lithium niobate crystal was
chosen as a nonlinear medium with the refractive index
dispersion from [24]. The wave vector mismatch for the e-ee
interaction is Δk ≈ 0.92 μm−1. Thus, the first-order quasi-
phase-matched SHG requires modulation of the nonlinearity
with a period of Λ � 6.78 μm.

A set of random uniform layer thicknesses is simulated using
Eq. (10). In practice, it is reasonable to take into account the
absolute accuracy of sample positioning σΛ∕2 instead of the
relative σ value. As an actual positioning accuracy, we can
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choose a value of 1 μm corresponding to the relative standard
deviation σ ≈ 0.15.

Second-harmonic intensity I 2 � jA2�L�j2 is calculated
using Eqs. (1) and (6). Dependences of SH intensity on the
coordinate l n for a series of random implementations of the
structure are shown in Fig. 2 (blue curves, 1–3). Random im-
plementations of the structure were simulated using Eq. (10).
The parameters were σ � 0.15,M � 30, N � 24, and a crys-
tal thickness of L ≈ 5 mm. We found that the monotonic SH
intensity growth in the periodically poled layers can be changed
for a decrease due to the random phase shifts acquired in the
random uniform layers, and then the process can be switched
back (curves 2 and 3). The average SH intensity calculated by
Eq. (14) is raised almost linearly at N (red curve in Fig. 2).

Figure 3 shows the SH intensity as a function of the stan-
dard layer thickness deviation for 10 random implementations
calculated using Eqs. (6) and (10). The data averaging reveals
the nonmonotonic behavior, which is caused by a small num-
ber of implementations. One can see that the average SH
intensity described by Eq. (14) derived using the developed
statistical theory fits the results of the random implementa-
tions well.

We consider the process in the extreme cases when the uni-
form layer thickness is exactly equal to the regular structure
half-period or period. The first case corresponding to the per-
fect quasi-phase matching is mathematically expressed as δn �
Λ∕2 and σ � 0. In this case, the SH intensity calculated using
Eq. (12) obeys the quadratic law corresponding to the quasi-
phase-matched SHG (Fig. 2).

An interesting situation is observed when the uniform layer
thicknesses are exactly equal to the regular structure period
(δn � Λ and σ � 0). Basically, the SHG phase mismatch leads
to the SH intensity oscillations along the media. In the case
under study, a new type of the SH intensity oscillations along
the structure is numerically predicted, as can be seen in Fig. 4.
From our model it is possible to find that extreme values of the
SH intensity are given by dependence I 2 ∼ sin2�ΔkN Λ̃∕4�,

where Λ̃ � �2M � 3�Λ is the oscillation period. It differs from
the SH intensity oscillations with period Λ in uniform media.
In the case under study the phase shift caused by the wave vec-
tor mismatch is defined by a half of the length of the uniform
layer and is equal to π. The phase shift is equal to mπ for the
structure with m periods of the structure. It results in periodic
dependence of intensity with the period equal to the double
length of the periodically poled layer. The oscillations are very
similar to those corresponding to the Maker fringes observed in
uniform media at the phase mismatch (see, for example, [22]).
The oscillation amplitude can be enhanced by a factor of
4�M � 1�2. In addition, this behavior will result in the SH
intensity oscillations in the spectral and angular dependences
shown in Fig. 5(a). They can be treated as quasi-phase-matched
Maker fringes. For this purpose, the fundamental wavelength
was tuned and thicknesses of all the layers were divided by
cos θ, where angle θ is counted from the quasi-phase-matching

Fig. 2. Dependences of the SH intensity on the coordinate (blue
curves, 1–3) for three random implementations of the structure cal-
culated using Eq. (8) (σ � 0.15, M � 30, N � 24, and L ≈ 5 mm),
and average intensity calculated using Eq. (14) (red curve). The out-
lined region is constrained by the results calculated using Eq. (12)
(lower green curve) and Eq. (13) (upper green curve).

Fig. 3. Dependence of the SH intensity on the standard random
layer deviation for 10 random implementations (blue points), their
average values (blue nonmonotonic curve), and average intensity
calculated using Eq. (14) (red monotonic curve).

Fig. 4. SH intensity oscillations in the structure calculated numeri-
cally (solid line) and using Eq. (6) (points) at the parameters of
δn � Λ, σ � 0, and M � 2.
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direction. There are two spectral peaks that exhibit a long-
wavelength shift upon rotation of the structure. The spectral
spacing between the peaks grows with a decrease in M .
Figure 5(b) shows the corresponding angular dependence of
the SH spectral intensity for a periodically poled crystal
(δn � Λ∕2).

Recently we have known that similar structures with ran-
dom [25] and regular [26] intermediate layers were previously
studied. Our study complements these results, which primarily
focused on spectral features of the second-harmonic. At the
same time, we have accurately developed a statistical approach
which can be generalized to the study of frequency doubling of
ultrashort laser pulses in such structures.

Thus, we have developed the statistical theory of frequency
doubling in assembled nonlinear photonic crystals with the
periodic structures mediated by the layers of random thickness.
Our analysis shows that the SH intensity in the structure under
study in the limit incoherent case is I 2 ∝ NM 2 instead of I 2 ∝
�NM�2 corresponding to the regular structure (coherent sum-
mation of the contribution of layers). It means that the struc-
ture under study is inferior to the regular one inN times. It was
shown that the second-harmonic oscillations enhanced by the
quasi-phase matching take place in the absence of periodic
compensations of the phase mismatch.
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