New Publications

Variable Spatial Dynamics of Optical Vortices Produced by a Double Fork-Shaped Grating

Darmaev, E.C., Ikonnikov, D.A., Myslivets, S.A., Arkhipkin, V.G., Vyunishev, A.M.// Annalen der Physik//

https://doi.org/10.1002/andp.202400120

Light diffraction is studied numerically and experimentally on a double fork-shaped grating representing a periodic grating containing two spaced dislocations. The spatial dynamics of the phase singularities (optical vortices) has been investigated as a function of dislocation parameters. Produced optical vortices affect each other while propagating in a free space. For dislocations of the same topological charge, the propagation trajectories and their transverse displacement coordinates depend on the dislocation spacing, and the larger the dislocation spacing, the smaller the relative displacement of the optical vortices and the smaller their trajectory curvatures. For oppositely charged dislocations, three types of spatial behavior of optical vortices are found. The numerical results agree well with the experimental data.

Synthesis of anhydrous lanthanum acetate. Analysis of it's structural, thermal and electronic properties

Oreshonkov, A.S., Azarapin, N.O., Tyutyunnik, A.P., Pankin, D.V., Razumkova, I.A.// Inorganica Chimica Acta//

https://doi.org/10.1016/j.ica.2024.122310

Acetate complexes of rare earth elements are extensively studied compounds known for their diverse properties and potential applications and lanthanum acetate hydrate is commercially available. In this work, a powdered anhydrous lanthanum acetate (La(CH3COO)3) sample was prepared by dissolving lanthanum oxide (La2O3) in an excess of acetic acid (CH3COOH) and distilled water (H2O), followed by direct evaporation at 150 °C. The decomposition of La(CH3COO)3 was studied, showing initiation around 300 °C and conclusion at ≥700 °C, with four distinct thermal events (I–IV) of mass loss. Gas phase identification revealed acetone and carbon dioxide as decomposition products, indicating pyrolytic decarboxylation. The final thermal effect (IV) is linked to the decomposition of La2O2CO3 to La2O3. The DFT refinement of atomic coordinates of hydrogen atoms, which were unavailable from experiment, was successfully performed. Obtained structural data was checked using vibrational spectroscopy method. The calculated electronic band structure of La(CH3COO)3 indicates it as an indirect wide band gap material with values of direct transition close to indirect. The optical bandgap is found to be 5.49 eV, suggesting that the charge transfer in La(CH3COO)3 can be optically activated with wavelengths shorter than 226 nm, which falls within the deep UV (DUV) region.

Microwave Heating of Oxidized Iron Powders in Ferromagnetic Resonance Mode

Stolyar, S.V., Nikolaeva, E.D., Li, O.A., (...), Balaev, D.A., Iskhakov, R.S.// Inorganic Materials: Applied Research//

https://doi.org/10.1134/S2075113324700400

By the example of α-Fe2O3 hematite, 5Fe2O3⋅9H2O ferrihydrite, and γ-Fe2O3 maghemite powders, a microwave-radiation-induced powder system temperature growth ΔTmax of several degrees has been measured in the ferromagnetic resonance mode at a frequency of 8.9 GHz. The powders heat up the most in the external field H coinciding with the ferromagnetic resonance field. The value of the ΔTmax effect depends on the magnetization of a powder material. The results obtained allow us to propose a new magnetic hyperthermia method for biomedical applications.

Effect of the Core–Shell Exchange Coupling on the Approach to Magnetic Saturation in a Ferrimagnetic Nanoparticle

Komogortsev, S.V., Stolyar, S.V., Mokhov, A.A., (...), Velikanov, D.A., Iskhakov, R.S.// Magnetochemistry//

 https://doi.org/10.3390/magnetochemistry10070047

The generally accepted model of the magnetic structure of an iron oxide core–shell nanoparticle includes a single-domain magnetically ordered core surrounded by a layer with a frozen spin disorder. Due to the exchange coupling between the shell and core, the spin disorder should lead to nonuniform magnetization in the core. Suppression of this inhomogeneity by an external magnetic field causes the nonlinear behavior of the magnetization as a function of the field in the region of the approach to magnetic saturation. The equation proposed to describe this effect is tested using a micromagnetic simulation. Analysis of the approach to magnetic saturation of iron oxide nanoparticles at different temperatures using this equation can be used to estimate the temperature evolution of the core–shell coupling energy and the size of the uniformly magnetized nanoparticle core and the temperature behavior of this size.

Uniaxial Negative Thermal Expansion in γ-LiBO2 with a Closed-Framework Diamond-Like Structure

Liang, Z., Zhou, H., Li, Y., (...), Zhang, C., Lin, Z.// Chemistry of Materials//

https://pubs.acs.org/doi/full/10.1021/acs.chemmater.4c01205

Negative-thermal-expansion (NTE) materials violate the common knowledge of “thermal expansion and cold contraction” in solids and embrace various physical mechanisms. In most phonon-driven NTE materials, an open-framework structure is necessary to accommodate the spatially anisotropic phonon excitations of the bridged atoms, but such a structural feature may result in structural instability at a high temperature. Herein, we focus on γ-LiBO2 with a closed-framework diamond-like structure and identify its uniaxial NTE behavior over the largest temperature range (100−850 K) among this structural family. As the temperature increases, the synergetic structural modification of the constituent structural groups, i.e., the stretching and bending of the Li−O bonds in floppy [LiO4] and the tension or rotation in the [BO4] group, accounts for NTE along the c-axis. Our study unveils that, apart from the anisotropic phonon excitations of individual atoms, the preferred phonon excitations of structural groups are also able to generate NTE, which would update the understanding of the NTE mechanism and guide the further exploration of phonon-driven NTE materials.

Charge transfer plasmons in nanoparticle arrays on graphene: Theoretical development

Fedorov, A.S., Eremkin, E.V.// Journal of Applied Physics//

https://doi.org/10.1063/5.0206742

The properties of charge transfer plasmons (CTPs) in periodic metallic nanoparticle arrays (PMNPAs) on the single-layer graphene surface are studied within a computationally efficient original hybrid quantum-classical model. The model is based on the proven assumption that the carrier charge density in doped graphene remains unchanged under plasmon oscillations. Calculated CTP frequencies for two PMNPA geometries are shown to lie within the THz range and to be factorized, i.e., presented as a product of two independent factors determined by the graphene charge density and the PMNPA geometry. Equations are derived for describing the CTP frequencies and eigenvectors, i.e., oscillating nanoparticle charge values. It is shown that the CTP plasmons having a band structure containing a wave vector and a band number, like to phonons in periodic media, can be divided into an acoustic mode and optical CTP modes. For the acoustic modes, the CTP group velocity tends to zero at �→0⁠, but reaches a value of ∼�Fermi in graphene inside the Brillouin zone, while for the optical modes, the group velocity dispersion is extremely weak, although their energy is higher than the acoustic plasmon energies. It is shown that the calculated dependence of CTP frequencies on the carrier concentration in graphene is in good agreement with experimental data. We believe that the proposed model can help in designing various graphene-based terahertz nanoplasmonic devices of complex geometry due to very high computational efficiency.

Thermal expansion, T−x phase diagram and polarization of (1-x)Na1/2Bi1/2TiO3-xBaTiO3 solid solutions

Gorev, M.V., Flerov, I.N., Molokeev, M.S., (...), Sapozhnikov, S.V., Mikhaleva, E.A.// Journal of the European Ceramic Society//

https://doi.org/10.1016/j.jeurceramsoc.2024.116769

The paper presents the results of detailed studies of thermal expansion of solid solutions (1-x)Na1/2Bi1/2TiO3-xBaTiO3 with x=0.04-0.97 in the temperature range from 100 to 900 K. A change in chemical pressure associated with the complex cationic substitution, (Na1/2Bi1/2)2+→ Ba2+, result in a very rapid decrease in the temperatures of the transformation �4��→�2��→�3� below 100 K which are characteristic of BaTiO3. Significant features in the behavior of thermal expansion were observed near two triple points in the �−� phase diagram where the phases ��3̄��4���4�� (x0.15-0.20) and �4���4���3� (x0,06) coexist, allow the studied solid solutions to be divided into three groups. The relationship between the effects of internal chemical pressure and external hydrostatic one is discussed. By analyzing the thermodynamic potential, the root-mean-square polarization �� is determined, which increases by about 16% with a decrease in the BT content from 0.97 to 0.4.

Raman study of decomposition of Na-bearing carbonates in water fluid at high P–T parameters

Goryainov, S., Krylov, A., Borodina, U., (...), Vtyurin, A., Grishina, S.// Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy//

https://doi.org/10.1016/j.saa.2024.124801

The study of Na-carbonates stability and their transformations in aqueous carbonate fluid under high P–T conditions is relevant from the point of view of the understanding geochemical processes of the Na-assisted carbon circulation in the Earth’s crust and subduction zones. In situ Raman study of Na-bearing carbonate-water-Fe-metal system in diamond anvil cell (DAC) at high P–T conditions revealed that carbonates decompose with abiogenic formation of formates and other organic compounds that differs from behavior of carbonates in dry system. XRD and FTIR methods have been used additionally to determine the phase composition. Na-bearing carbonates (nahcolite NaHCO3, shortite Na2Ca2(CO3)3 and cancrinite Na7Ca[(CO3)1.5Al6Si6O24]2H2O) in aqueous fluid decompose to form simple carbonates and formates (as dominant organic molecules) at moderate P–T parameters (above 0.2 GPa, 200 °C). Our experimental results directly confirm the hypothesis of Horita and Berndt (Science, 1999) about possible yield of organic formates in the carbonate-water-metal system.

Nahcolite NaHCO3 in aqueous fluid in the presence of Fe metal decomposes into anhydrous phases: natrite -Na2CO3, siderite, magnetite (due to dissolution of Fe steel gasket), Na-formate and likely organic molecular crystalline solvate of Na-formate and methyl formate. Shortite decays into anhydrous phases: aragonite CaCO3, Na-Ca-formates and an amorphous phase. Cancrinite decomposes to unidentified carbonate-alumonosilicate phases, Na-Ca-formates and unknown organic molecular crystal. Magnetite is also formed in this system due to dissolution of Fe steel gasket used in DAC. The present study provides a new insight in processes of abiogenic formation of organic matter from carbonates in the crust and upper mantle.

Achieving Ultra-Broadband Sunlight-Like Emission in Single-Phase Phosphors: The Interplay of Structure and Luminescence

Liu, S., Li, L., Qin, X., (...), Zhou, L., Wu, M.// Advanced Materials//

https://doi.org/10.1002/adma.202406164

The quest for artificial light sources mimicking sunlight has been a long-standing endeavor, particularly for applications in anticounterfeiting, agriculture, and color hue detection. Conventional sunlight simulators are often cost-prohibitive and bulky. Therefore, the development of a series of single-phase phosphors Ca9LiMg1-xAl2x/3(PO4)7:0.1Eu2+ (x = 0-0.75) with sunlight-like emission represents a welcome step towards compact and economical light source alternatives. The phosphors are obtained by an original heterovalent substitution method and emit a broad spectrum   spanning from violet to deep red. Notably, the phosphor with x = 0.5 exhibits an impressive full width at half-maximum of 330 nm. A synergistic interplay of experimental investigations and theory unveils the mechanism behind sunlight-like emission due to the local structural perturbations introduced by the heterovalent substitution of Al3+ for Mg2+, leading to a varied distribution of Eu2+ within the lattice. Subsequent characterization of a series of organic dyes combining absorption spectroscopy with convolutional neural network analysis convincingly demonstrates the potential of this phosphor in portable photodetection devices. Broad-spectrum light source testing empowers the model to precisely differentiate dye patterns. This points to the phosphor being ideal for mimicking sunlight. Beyond this demonstrated application, the phosphor's utility is envisioned in other relevant domains, including visible light communication and smart agriculture.

Small Magnetic Hysteresis in Bi2223 Polycrystalline High-Temperature Superconductor

Balaev, D.A., Semenov, S.V., Gokhfeld, D.M., Petrov, M.I.// Journal of Superconductivity and Novel Magnetism//

https://doi.org/10.1007/s10948-024-06802-w

Bi‒Sr‒Ca‒Cu‒O polycrystalline high-temperature superconductors with the 2–2-2–3 structure have been comprehensively studied, their properties have been described, and features of the small magnetic hysteresis in the investigated materials have been established. The small magnetic hysteresis is shown to be caused by the penetration of a magnetic flux into a superconductor and its capture in the region of boundaries between HTS crystallites and by Meissner currents flowing through these boundaries. It has been found that, at a certain magnetic prehistory, the small hysteresis collapses, i.e. its footprints disappear. This has been attributed to the interaction between two superconducting subsystems in the investigated polycrystalline HTS, specifically, the effect of the magnetic moments of HTS crystallites on the effective field in the regions of intercrystalline boundaries. The shape of the small magnetic hysteresis loop has been described within the critical state model.

Anisotropic Exchange Interactions in a Ferromagnet PbMnBO4

Martynov, S.N.// JETP Letters//

https://doi.org/10.1134/S0021364024600812

The field dependence of the magnetization along the hard axes in a four-sublattice ferromagnet PbMnBO4 is calculated by the numerical minimization of the ground state energy in the approximation of classical magnetic moments. The parameters of anisotropic interactions—the second-order single-ion anisotropy constants, the magnitude and direction of the antisymmetric exchange vector, and the symmetric anisotropic exchange tensor—are obtained by a comparison with experimental magnetization curves. The direction of the Dzyaloshinskii–Moriya interaction vector is close to the orthorhombic c axis. The symmetric exchange tensor has an almost uniaxial form with the easy axis perpendicular to the antisymmetric exchange vector. Changes in the energy of each anisotropic interaction during magnetization reorientation are calculated.

Synergetic manipulation of components and multiple activator sites towards full-spectrum lighting in Eu2+-doped whitlockite phosphors for high color-rendering WLED

Chen, H., Zhang, Z., Mi, R., (...), Min, X., Liu, Y.-G.// Journal of Luminescence//

https://doi.org/10.1016/j.jlumin.2024.120795

Tuning the components and multiple activator sites possesses profound significances on the regulation for corresponding luminescent properties of target phosphors. However, it is still challenging to realize full-visible emission via single activator in a single phase owing to the matrix diversity and uncertainty for multi-site occupation. Herein, we developed a family of whitlockite-type solid-solution phosphors Ca8MgGa1-yLay(PO4)7: Eu2+(y = 0–1) via inducing the La3+ ions into Ca8MgGa(PO4)7:Eu2+. The local environments of Eu2+ ions and corresponding tunable photoluminescent properties, decay times and thermal stability are revealed systematically in detail. Specially, the excitation and emission spectra of Ca8MgGa1-yLay(PO4)7: Eu2+ are broadened gradually, finally towards a full-visible emission with 152 nm bandwidth spectrum for the phosphor Ca8MgLa(PO4)7: Eu2+. WLED with a high color rendering index (CRI = 95) and low color temperature (CCT = 3764 K) was fabricated based on the full-visible emission Ca8MgGa0.2La0.8(PO4)7: 0.08Eu2+ phosphors under a 365 nm chip, indicating the prominent potentials for high-color-rendering WLEDs. These results in current work provide new ideas for synergetic manipulation of components and multiple activator sites towards a full-visible emission in single-phase applied for white lighting.

Phonon softening and atomic modulations in EuAl4

Korshunov, A.N., Sukhanov, A.S., Gebel, S., (...), Morosan, E., Rahn, M.C.// Physical Review B//

https://doi.org/10.1103/PhysRevB.110.045102

EuAl4 is a rare-earth intermetallic in which competing itinerant and/or indirect exchange mechanisms give rise to a complex magnetic phase diagram, including a centrosymmetric skyrmion lattice. These phenomena arise not in the tetragonal parent structure but in the presence of a charge-density wave (CDW), which lowers the crystal symmetry and renormalizes the electronic structure. Microscopic knowledge of the corresponding atomic modulations and their driving mechanism is a prerequisite for a deeper understanding of the resulting equilibrium of electronic correlations and how it might be manipulated. Here, we use synchrotron single-crystal x-ray diffraction, inelastic x-ray scattering, and lattice-dynamics calculations to clarify the origin of the CDW in EuAl4. We observe a broad softening of a transverse acoustic phonon mode that sets in well above room temperature and, at 𝑇CDW=142 K, freezes out in an atomic displacement mode described by the superspace group 𝐼⁢𝑚⁡𝑚⁡𝑚⁡(00⁢𝛾)⁢𝑠⁢00. In the context of previous work, our observation is a clear confirmation that the CDW in EuAl4 is driven by electron-phonon coupling. This result is relevant for a wider family of BaAl4 and ThCr2⁢Si2-type rare-earth intermetallics known to combine CDW instabilities and complex magnetism.

Effects of internal and external decoherence on the resonant transport and Anderson localization of fermionic particles in disordered tight-binding chains

Kolovsky, A.R.// Physical Review B//

DOI:https://doi.org/10.1103/PhysRevB.110.035410

We study the effects of relaxation/decoherence processes on quantum transport of noninteracting Fermi particles across the disordered tight-binding chain, where we distinguish between relaxation processes in the contacts (external decoherence) and those in the chain (internal decoherence). It is shown that external decoherence reduces conductance fluctuations but does not alter the Anderson localization length. This is in strong contrast with the effect of internal decoherence which is found to suppress Anderson localization. We also address quantum transport in chains with particle losses which are of considerable interest for laboratory experiments with cold atoms.

Structural, electronic, and optical properties of ferroelectric hybrid (Me2NH2)[NaFe(CN)5(NO)] crystal: Density functional theory simulation

Krylova, S., Xu, W.-J., Rocha, J., Kholkin, A.// Materials Today Communications//

https://doi.org/10.1016/j.mtcomm.2024.109623

Utilizing density functional theory (DFT), we embarked on a comprehensive investigation of the structural, electronic, and optical properties characteristic of the ferroelectric hybrid (Me2NH2)[NaFe(CN)5(NO)] crystal. The geometry of the crystal structure in the ���21 phase was optimized. We simulated the electronic band structure within the first Brillouin zone. The calculated band gap for the indirect U-X transition is 2.401 eV, indicative of a wide band gap semiconductors. We also simulated the density of electronic states across the Brillouin zone. The simulation of the electronic structure revealed that the crystal comprises both ionic and covalent bonds. We accurately predicted various optical parameters including the dielectric function, conductivity, reflectivity, loss function, absorption, and refractive index. The reflectivity of the crystal does not exceed 21 percent. All calculated optical properties of the (Me2NH2)[NaFe(CN)5(NO)] crystal are anisotropic.

Magnetic properties and magnetoresistance of hybrid multilayer nanostructures {[(Co40Fe40B20)34(SiO2)66]/[ZnO]}n

Kalinin, Y.E., Sitnikov, A.V., Makagonov, V.A., (...), Rylkov, V.V., Granovsky, A.B.// JMMM

https://doi.org/10.1016/j.jmmm.2024.172287

The structural, electrical, magnetic, magneto-optical properties and magnetoresistance of {[(Co40Fe40B20)34(SiO2)66]/[ZnO]}n multilayer structures, where n = 50 is the number of bilayers (Co40Fe40B20)34(SiO2)66 nanocomposite and ZnO have been studied. The thicknesses of (Co40Fe40B20)34(SiO2)66 nanocomposite layers as well as ZnO spacers were varied in a wide range. The samples were synthesized by ion-beam sputtering onto glass ceramic substrates. The (Co40Fe40B20)34(SiO2)66 composite have an amorphous structure and the semiconductor ZnO interlayers have a hexagonal crystalline structure with the p63mc symmetry group. The nanocomposite layers containing a ferromagnetic component far from the percolation threshold are in a superparamagnetic state. The presented in the paper data of magnetization, magneto-optical transverse Kerr effect and magnetoresistance indicates that long-range ferromagnetic order does not form down to 77 K both for references ZnO films and studied multilayers with thin and thick ZnO interlayers. An increase in the magneto-optical signal in multilayers compared to references (Co40Fe40B20)34(SiO2)66 composite films has been detected at 1.2 eV. The magnetoresistance of {[(Co40Fe40B20)34(SiO2)66]/[ZnO]}n multilayers with thick (>32 nm) ZnO interlayers is lower than in reference (Co40Fe40B20)34(SiO2)66 nanocomposite, while at thin ZnO interlayers magnetoresistance is significantly higher and reaches 12 % at temperatures of 77 К. Possible mechanisms of ferromagnetic and antiferromagnetic ordering, enhancement of the magneto-optical response and magnetoresistance in {[(Co40Fe40B20)34(SiO2)66]/[ZnO]}n multilayer nanostructures are discussed.

Synthesis, crystal structure, and magnetic properties of Ni2CrBO5

Belskaya, Journal of Magnetism and Magnetic Materials//N.A., Eremin, E.V., Vasiliev, A.D., (...), Krasilin, A.A., Kazak, N.V.// JMMM

http://dx.doi.org/10.2139/ssrn.4805398

Ni2CrBO5 has been synthesized and investigated by X-ray diffraction, dc magnetization, and specific heat measurements. The unusual cation distribution has been established: the M1 and M3 sites are occupied by Ni2+ ions, the M2 site is by Cr3+ ions, and the M4 site is mixed, featuring both Ni2+and Cr3+ ions. The magnetic order onsets at TN=140 K, which is confirmed by a λ-type peak in specific heat, followed by the dome-shaped anomaly of the magnetization at about 30 K. In the magnetically ordered state, a remarkable sequence of temperature-induced magnetization reversal sensitive to the measurement’s regime is observed. Dominant antiferromagnetic interactions are characterized by the Weiss temperature θ = -73 K. The effective magnetic moment of 5.37 μB per formula unit is close to the spin-only one. The effect of the cation distribution on the magnetic properties is discussed.

Properties of La2F4Se, B–LaFSe phases. Phase diagram of the LaF3–La2Se3 system

Grigorchenko, V.M., Molokeev, M.S., Yurev, I.O., (...), Elyshev, A.V., Andreev, O.V// Journal of Solid State Chemistry//

https://doi.org/10.1016/j.jssc.2024.124880

Lanthanum selenidofluorides belong to wide-gap semiconductors and are promising for optoelectronics. La2F4Se, B–LaFSe compounds were obtained by the ampoule method from binary compounds. Crystals La2F4Se, R-3m, a = 4.18245(11) Å, c = 23.2939(6) Å, Z = 3, B–LaFSe P63/mmc, a = 4.21989(5) Å, c = 8.19140(10) Å, Z = 2 have a layered grain structure, their microhardnesses are 340 and 450 HV, which allows samples processing. The optical bandgap of La2F4Se is 4.5 eV. The optical bandgaps of La2F4Se and B–LaFSe were analyzed by comparing the calculated absorption spectra and the experimental Kubelka-Munk Functions. It was shown that this approach is attractive in explaining optical properties in the vicinity of fundamental absorption onset and in neighboring regions. In LaF3–La2Se3 system, temperatures and enthalpies of five phase transformations were determined, and their balance equations were obtained. It was shown that La2F4Se, B–LaFSe compounds melt incongruently and that an eutectic is formed between the phases. A phase diagram of LaF3–La2Se3 system was constructed. The liquidus calculated by Redlich-Kister polynomial agrees with the data of differential scanning calorimetry.

Kinetics of diffusion and phase formation in a solid-state reaction in Al/Au thin films

Altunin, R.R., Moiseenko, E.T., Zharkov, S.M.// Journal of Alloys and Compounds//

https://doi.org/10.1016/j.jallcom.2024.175500

The kinetics of diffusion and formation of Al-Au intermetallic compounds in a solid-state reaction between layers of aluminum and gold has been studied by the method of in situ electron diffraction. The phase sequence in the solid-state reaction in Al/Au thin films is found to depend on the atomic ratio of aluminum and gold at the initial state. Specifically, with the atomic ratio being Al:Au=2:1, one observes the formation sequence: Al3Au8→AlAu2→Al2Au, while with the ratio Al:Au=1:4, the sequence is Al3Au8→AlAu4. The observed change in the sequence is explained using the theoretical model of EHF (Effective Heat of Formation). The kinetic parameters of the diffusion of gold through the layer of reaction products in the Al/Au thin films have been determined, including the apparent activation energy of the diffusion Ea=1.17 eV and pre-exponential factor D0=120 cm2/s. Based on the data obtained by in situ electron diffraction, the kinetic parameters of the phase formation have been estimated by the Kissinger-Akahira-Sunose method. In addition, the kinetic parameters of the formation of the Al-Au intermetallic compounds have been determined (apparent activation energy Ea, pre-exponential factor A) in the solid-state reaction in the Al/Au thin films, namely, Ea = 0.77 eV, log(A, s−1) = 9 for Al3Au8; Ea = 1.08 eV, log(A, s−1) = 13 for AlAu2; Ea = 1.13 eV, log(A, s−1) = 13 for Al2Au; and Ea = 1.35 eV, log(A, s−1) = 16 for the phase AlAu4. The kinetic parameters of the formation of the AlAu4 phase have been estimated for the first time.

NEMATIC ORIENTATION WITH POLYMER FILM TEXTURED BY STAMP NANOLITHOGRAPHY METHOD

Krakhalev, M.N., Tumashev, V.S., Seleznev, V.A., (...), Prishchepa, O.O., Zyryanov, V.Y.// Zhidkie Kristally i Ikh Prakticheskoe Ispol'zovanie//

Liquid crystal cells, in which the planar director orientation is specified by SU-8 polymer films treated by the stamp nanoprinting method, have been studied. The orienting film surface after texturing represents a comb-shaped lattice, the profile of which depends on the processing temperature. In cells filled with nematic LC E7, a homogeneous orientational structure with a small number of surface linear defects on both substrates is formed. These defects do not appear in LC cells with asymmetric substrates, when one of them is coated with an SU-8 film, and the other one is covered with a rubbed nylon-6 film. It has been shown that the director pre-tilt angle on the studied SU-8 films is close to zero and the films set a strong polar anchoring energy for the nematic E7. The results obtained are of interest for the development of methods for manufacturing LC devices using technologies for nanoprinting of orienting polymer films.

PHOTOINDUCED TRANSFORMATION OF THE ORIENTATIONAL STRUCTURE OF A CHIRAL NEMATIC UNDER PLANAR-CONICAL ANCHORING

Abdullaev, A.S., Krakhalev, M.N., Zyryanov, V.Y.// Liquid Crystals and their Application//

DOI: 10.18083/LCAppl.2024.1.90

Исследовано фотоиндуцированное изменение ориентационной структуры хирального нематика на основе ЛН-396, допированного хиральными добавками S811 и cChD. Продемонстрировано, что использование планарно-конических граничных условий позволяет реализовать плавное изменение угла закрутки его структуры вследствие изменения шага спирали. Показано, что при коническом сцеплении, задаваемом полимером ПиБМА для исследуемого хирального нематика, закрутка структуры на угол более 240° приводит к появлению ондуляций структуры. Обнаружено, что полимер ПтБМА задает для исследуемого хирального нематика тангенциальные граничные условия, позволяющие директору легко поворачиваться в плоскости образца. Представленные результаты могут быть перспективными для разработки жидкокристаллических систем с тонко настраиваемыми и перестраиваемыми полярным и азимутальным углами директора.

POLARIZABILITY DENSITY AND ORIENTATION ORDER OF MOLECULES (MONOMERS) IN UNIAXIAL MOLECULAR (POLYMER) FILM

E. M. Aver’yanov// Liquid Crystals and their Application//

DOI:10.18083/LCAppl.2024.2.54

In order to gain an adequate understanding about the nature of spectral and optical properties of uniaxial molecular (polymer) films, the data about the energy structure of molecules (monomers) and the long-range orientation order of dipole moments m_q of electronic/vibrational transitions are needed. This order is characterized by the order parameters U_q of moments m_q with respect to the optical axis n of the film. Until now, components n_j(omega), k_j(omega) of refractive indices N_j(omega) = n_j(omega) – ik_j(omega) or components epsilon_(1,2)j(omega) of dielectric constants epsilon_j(omega) = epsilon_1j(omega) – iepsilon_2j(omega) of the film for the light-wave polarizations along (j = ||) and across (j = perpendicular) the axis n had been used as indirect sources of such data. The direct information about the energy structure of molecules (monomers) and parameters U_q is contained in the components gamma_(1,2)j(omega) of ensemble-averaged polarizabilities gamma_j(omega) = gamma_1j(omega) – igamma_2j(omega) of molecules (monomers). In this work, components P_(1,2)j(omega) of polarizabilities densities P_j(omega) = [epsilon_j(omega) – 1]/f_j(omega) = 4PiNgamma_j(omega) = P_1j(omega) – iP_2j(omega) are used for receiving such information. Here, f_j(omega) = 1 + L_j[epsilon_j(omega) – 1] are the local-field tensor components for the light wave in the film; the Lorentz-tensor components L_j are obtained using the dependences n_j(omega) in the transparency region of the film; N is the number of molecules (monomers) per unit volume of the film. Methods for determining parameters U_q for molecular transitions were developed using the dependences P_(1,2)j(omega) within the isolated absorption bands corresponding to the transitions. The methods were confirmed for the uniaxial films of the conjugated polymer F8BT with the preferred orientation of macromolecules in the film plane XY with the optical axis n||Z and the known dependences n_j(omega), k_j(omega) in the transparency and lowfrequency electronic absorption ranges. The spectral-invariant correlations connecting functions P_(1,2)j(omega) and epsilon_(1,2)j(omega) were established.

N-Silylmethyl-2-(1-Naphthyl)Acetamides: Synthesis, Structure and Computational Screening

Soldatenko, A.S., Molokeev, M.S., Lazareva, N.F.// Current Organic Chemistry//

https://doi.org/10.2174/0113852728296495240409062733

Synthesis of new hybrid organosilicon compounds based on the amides 1- naphthylacetic acid was described. N-Organyl-2-(1-naphthyl)-N-[(triethoxysilyl)methyl]- acetamides were obtained by the reaction of 1-naphthylacetyl chloride with α-silylamines RNHCH2Si(OEt)3 (R = Me, i-Pr and Ph). Their subsequent interaction with N(CH2CH2OH)3 led to the formation of N-organyl-2-(1-naphthyl)-N-(silatranylmethyl)acetamides. The structure of these hybrid compounds was characterized by 1H, 13C, and 29Si NMR spectroscopy. The structure of N-methyl- and N-isopropyl-2-(1-naphthyl)-N-(silatranylmethy)acetamides was confirmed by X-ray diffraction analysis. Results of computational screening showed that these silatranes are bioavailable and have drug-likeness.

Cherenkov second harmonic generation of femtosecond laser pulses in a homogeneous nonlinear crystal

A M Vyunishev and A S Chirkin// Laser Physics//

DOI 10.1088/1555-6611/ad5156

In experiments on second harmonic (SH) generation (SHG), a conical structure of radiation has been observed. In the present study, a non-stationary theory of SH excitation of ultrashort laser pulses with phase modulation has been developed, which explains the properties of such a structure as Cherenkov radiation. Under phase-mismatched interactions, a maximum of the SH spectrum is observed at the Cherenkov angle, which is determined by the ratio of the SH and laser radiation phase velocities. It is shown that tightly focused laser beams are preferred to observe Cherenkov SHG. The SH spectral width depends on the group velocity mismatch and is more complicated on the excited radiation spectrum. The SH energy can be proportional to the crystal length or group delay length depending on their ratio. We also demonstrate that a complex angular distribution of spectral components (an angular chirp) appears within the SH cross-section.

Crystal structure and thermoelectric properties of mechanically activated LaCoO 3

Vyacheslav A. Dudnikov a, Yuri S. Orlov a b, Leonid A. Solovyov c, Sergey N. Vereshchagin c, Yuri N. Ustyuzhanin a, Sergey M. Zharkov a b, Galina M. Zeer b, Andrey A. Borus a, Vitaly S. Bondarev a b, Sergey G. Ovchinnikov// Journal Of The Taiwan Institute Of Chemical Engineers//

https://doi.org/10.1016/j.jtice.2024.105560

Crystal structure of rare-earth LaCoO3 cobalt oxide subjected to high energy mechanical activation has been studied. In the temperature range of 300–800 K, the electrical conductivity and Seebeck coefficient were measured. Thermal conductivity was measured at 300–480 K.

Bioluminescent aptamer-based microassay for detection of melanoma inhibitory activity protein (MIA)

Bashmakova, E.E., Kudryavtsev, A.N., Tupikin, A.E., (...), Sokolov, A.E., Frank, L.A.// Analytical Methods//

DOI https://doi.org/10.1039/D4AY00706A

Melanoma inhibitory activity protein (MIA) does obviously offer the potential to reveal clinical manifestations of melanoma. Despite a pressing need for effective diagnosis of this highly fatal disease, there are no clinically approved MIA detection ELISA kits available. A recommended MIA threshold has not yet been defined, mostly by reason of variability in immunoglobulins' affinity and stability, the difference in sample preparation and assay conditions. Here we present a pair of high-affinity DNA aptamers developed as an alternative recognition and binding element for MIA detection. Their stability and reproducible synthesis are expected to ensure this analysis under standard conditions. The devised aptamer-based solid-phase microassay of model standard and control human sera involves luciferase NLuc as a highly sensitive reporter. Bioluminescence dependence on MIA concentration ranges in a linear manner from 2.5 to 250 ng mL−1, providing a MIA detection limit of 1.67 ± 0.57 ng mL

Majorana Modes and Fano Resonances in Aharonov–Bohm Ring with Topologically Nontrivial Superconducting Bridge

Aksenov, S.V., Kagan, M.Y.// Journal of Low Temperature Physics//

https://doi.org/10.1007/s10909-024-03171-5

We study different resonances (first of all of the Fano type) in the interference device formed by the Aharonov–Bohm ring with superconducting (SC) wire in the topologically nontrivial state playing a role of a bridge between top and bottom arms. We analyze Majorana modes on the ends of the SC wire and show that the collapse of the additional Fano resonance, that is initially induced by transport scheme asymmetry, is connected with the increase of the length of the bridge when the binding energy of the Majorana end modes tends to zero. In local transport regime, the Fano resonances are stable against the change of the transport symmetry. The reasons of both collapse and sustainability are analyzed using a spinless toy model including the Kitaev chain.

Enhancement of the magnetoelectric effect in the Bi2Fe4O9/BiFeO3 composite as a result of dipole and migration polarization in mullite

Udod, L.V., Aplesnin, S.S., Zelenov, F.V., (...), Molokeev, M.S., Romanova, O.B.// Journal of Materials Science//

https://doi.org/10.1007/s10853-024-09885-x

The effect of the size of Bi2Fe4O9 and BiFeO3 nanoparticles on the magnetoelectric interaction in the Bi2Fe4O9/BiFeO3 composite with a percentage ratio of 67/33 has been studied. The electrostriction and electric polarization on electric and magnetic field in wide temperature range has been measured. The hysteresis of the polarization and I‒V characteristics has been found. Temperature ranges with activation and hopping types of conductivity have been found. The mechanism of electric polarization and the crossover temperature from dipole polarization to migration polarization at 260 K have been established. Linear and quadratic contributions to the magnetoelectric effect have been found. Below 120 K the linear contribution is an order of magnitude greater than the quadratic contribution and above 240 K the quadratic contribution to the ME effect prevails. Models have been proposed to explain the enhancement of the magnetoelectric effect as a result of the migration polarization in mullite and linear magnetoelectric effect in bismuth ferrite. The correlation of temperatures of the extremum of the temperature coefficient of the electrical resistance and the magnetic phase transition in mullite at 260 K indicates a polaron-type conductivity and a strong electron‒phonon interaction. A change in the sign of the electrostriction coefficient upon heating and the compression temperature of the composite in an electric field was found.

Kondo effects in variable-valence manganese-substituted thulium selenide

Romanova, O.B., Aplesnin, S.S., Sitnikov, M.N., (...), Zhivulko, A.M., Yanushkevich, K.I.// Ceramics International//

https://doi.org/10.1016/j.ceramint.2024.06.171

The MnXTm1‒XSe (0 ≤ Х ≤ 0.2) solid solutions have been first synthesized and their structural, magnetic, and transport properties have been studied in the temperature range of 80–1000 K and magnetic fields of up to 12 kOe. The surface morphology of the samples has been examined and the chemical analysis has been carried out. It is shown that the valence change with the increasing substitution concentration is accompanied by a change in the lattice parameter and a decrease in the magnetic moment of the samples. The Kondo temperatures caused by the manganese and thulium subsystem have been found in the low- and room-temperature regions. The temperature of localization of small-radius polarons has been determined. A drastic decrease in the relaxation time in the range of the manganese ion percolation through the lattice in the MnXTm1‒XSe system has been established. The change of the current carrier type upon variation in the temperature and substitution concentration was determined from the Seebeck coefficient. A high-temperature extremum of thermopower was revealed, which is explained within the framework of the Anderson model.

Resistive switching properties of a nanostructured layer of mixed ZrO2 phases obtained in low-pressure arc discharge plasma

Karpov, I.V., Fedorov, L.Y., Abkaryan, A.K., (...), Nemtsev, I.V., Irtyugo, L.A.// Vacuum//

https://doi.org/10.1016/j.vacuum.2024.113375

The controlled vacuum-arc synthesis of zirconium dioxide (ZrO2) nanoparticles is considered, which makes it possible to regulate the percentage ratio of the monoclinic and tetragonal phases. The samples were characterized using XRD analysis, SEM, HRTEM analysis, FT-IR analysis, TG/DTA analysis and EPR spectroscopy. It has been established that the formation of the tetragonal phase is associated with the formation of a large number of oxygen vacancies formed due to high-speed quenching of nanoparticles. Reducing the operating gas pressure in a vacuum chamber from 180 Pa to 30 Pa makes it possible to obtain nanoparticles up to 2 nm in size. The synthesized ZrO2 nanoparticles do not contain foreign impurities and when heated, the weight loss is up to 7 %. The process of local resistive switching in the contact of an atomic force microscope (AFM) probe to a nanostructured ZrO(2-x) layer on a conducting substrate has been studied. Cyclic current-voltage characteristics demonstrate the existence of stable states of high and low resistance, switched by changing the polarity of the applied voltage. The coexistence of the m- and t-ZrO2 phases (and the resulting oxygen nonstoichiometry in the interboundary regions) provides conditions for the formation/destruction of a filament from oxygen vacancies, which determine the conductivity of the dielectric in the LRS state

Document Actions


Поделиться: